Preview

Ожирение и метаболизм

Расширенный поиск

Dimorphic Nature of Adipose Tissue and Role of Herbal Extracts in Lipids Metabolism

https://doi.org/10.14341/omet13096

Аннотация

Adipose tissue, known as body fat, plays a crucial role in human health and disease. Traditionally viewed as a storage site for excess energy as body fat, advances in medical research have shown the complex and dynamic nature of adipose tissue, highlighting its critical role in the regulation of metabolism, hormone production, and immune response. Adipose tissue is subdivided into two types – lipids accumulating white adipose tissue (WAT) and brown adipose tissue (BAT), color of which is determined by the load of mitochondria; the beige adipose tissue (BeAT) is a mix of WAT and BAT cells. This review aims to explore the multifaceted aspects of WAT, focusing on key areas: the diverse cell types comprising WAT and their unique functions, the major genes expressed and secreted from adipose tissue cells, the role of adipose tissue in inflammation, and the sex-specific differences in adipose tissue transcriptomes. Understanding the intricate dynamics of adipose tissue in the context of secreted factors having systemic effects, including inflammatory response, is essential, given its central role in maintaining energy balance and metabolic homeostasis in health issues like obesity, type 2 diabetes, and cardiovascular diseases. Examining adipocyte-specific transcriptomes gives an understanding of the unique characteristics of these cells. The dimorphic nature of adipose tissue not only influences body fat distribution but also affects disease susceptibility and response to treatment. Additionally, this review will cover the increasingly recognized role and the intriguing effects of plant extracts on adipogenesis, which offer potential therapeutic avenues for treating obesity and its related disorders.

Об авторе

S. G. Dzitoyeva
Institute of Biomedical Research, the Affiliate of Vladikavkaz Scientific Centre of Russian Academy of Sciences
Россия

Svetlana Dzitoyeva, PhD in Biology

1 Williams, str., 363110, Mikhailovskoye

Researcher ID: KFC-3536-2024

Scopus ID: 6506242431



Список литературы

1. Al-Suhaimi EA. Adipose Tissue as an Endocrine Organ and a Glance on Local Hormones. In: Emerging Concepts in Endocrine Structure and Functions. ; 2022. doi: https://doi.org/10.1007/978-981-16-9016-7_10

2. Wang T, Sharma AK, Christian Wolfrum C. Novel insights into adipose tissue heterogeneity. Reviews in Endocrine and Metabolic. 2022;(23) 5-12. doi: https://doi.org/10.3929/ethz-b-000522329

3. Lenz M, Arts ICW, Peeters RLM, de Kok TM, Ertaylan G. Adipose tissue in health and disease through the lens of its building blocks. Nature Scientific Reports. 2020; 10(1):10433. doi: https://doi.org/10.1038/s41598-020-67177-1

4. Hägglöf T, Vanz C, Kumagai A, Dudley E, Ortega V, et al. T-bet+ B cells accumulate in adipose tissue and exacerbate metabolic disorder during obesity. Cell Metabolism. 2022; 34(8):1121-1136.e6. doi: https://doi.org/10.1016/j.cmet.2022.07.002.

5. Ter Horst R, van den Munckhof ICL, Schraa K, Aguirre-Gamboa R, Jaeger M, et al. Sex-Specific Regulation of Inflammation and Metabolic Syndrome in Obesity. Arterioscler Thromb Vasc Biol. 2020;40(7):1787-1800. doi: https://doi.org/10.1161/ATVBAHA.120.314508

6. Fujisaka S. The role of adipose tissue M1/M2 macrophages in type 2 diabetes mellitus. Diabetol Int. 2020;15,12(1):74-79. doi: https://doi.org/10.1007/s13340-020-00482-2

7. Varra FN, Varras M, Varra VK, Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Mol Med Rep. 2024;29(6):95. doi: https://doi.org/10.3892/mmr.2024.13219

8. García-Fuentes E, Santiago-Fernández C, Gutiérrez-Repiso C, Mayas MD, Oliva-Olivera W, et al. Hypoxia is associated with a lower expression of genes involved in lipogenesis in visceral adipose tissue. J Transl Med. 2015;13:373. doi: https://doi.org/10.1186/s12967-015-0732-5

9. O’Rourke RW, White AE, Metcalf MD, Olivas AS, Mitra P, et al. Hypoxia-induced inflammatory cytokine secretion in human adipose tissue stromovascular cells. Diabetologia. 2011;54(6):1480-90. doi: https://doi.org/10.1007/s00125-011-2103-y

10. Ahn J, Wu H, Lee K. Integrative Analysis Revealing Human Adipose-Specific Genes and Consolidating Obesity Loci. Sci Rep. 2019;9(1):3087. doi: https://doi.org/10.1038/s41598-019-39582-8

11. Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. Med Rev (2021). 2022;2(4):363-384. doi: https://doi.org/10.1515/mr-2022-0017

12. Roy B, Palaniyandi SS. Tissue-specific role and associated downstream signaling pathways of adiponectin. Cell Biosci. 2021;11(1):77. doi: https://doi.org/10.1186/s13578-021-00587-4

13. Mohallem R, Aryal UK. Regulators of TNFα mediated insulin resistance elucidated by quantitative proteomics. Sci Rep. 2020;10(1):20878. doi: https://doi.org/10.1038/s41598-020-77914-1

14. Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, et al. C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev. 2002; 16(1):22–26. doi: https://doi.org/10.1101/gad.948702

15. Anderson WD, Soh JY, Innis SE, Dimanche A, Ma L, et al. Sex differences in human adipose tissue gene expression and genetic regulation involve adipogenesis. Genome Res. 2020;30(10):1379-1392. doi: https://doi.org/10.1101/gr.264614.120

16. Gui Y, Silha JV, Murphy LJ. Sexual Dimorphism and Regulation of Resistin, Adiponectin, and Leptin Expression in the Mouse. Obesity Research. 2004;12(9):1481-91. doi: https://doi.org/10.1038/oby.2004.185

17. Varghese M, Song J, Singer K. Age and Sex: Impact on adipose tissue metabolism and inflammation. Mech Ageing Dev. 2021;199:111563. doi: https://doi.org/10.1016/j.mad.2021.111563

18. Pataky MW, Young WF, Nair KS. Hormonal and Metabolic Changes of Aging and the Influence of Lifestyle Modifications. Mayo Clin Proc. 2021;96(3):788-814. doi: https://doi.org/10.1016/j.mayocp.2020.07.033

19. Pan R, Chen Y. Fat biology and metabolic balance: On the significance of sex. Mol. Cell. Endocrinol. 2021;1(533):111336. doi: https://doi.org/10.1016/j.mce.2021.111336

20. van den Munckhof ICL, Bahrar H, Schraa K, Brand T, Ter Horst R, et al.

21. Sex-specific association of visceral and subcutaneous adipose tissue volumes with systemic inflammation and innate immune cells in people living with obesity. Int J Obes (Lond). 2024;48(4):523-532. doi: https://doi.org/10.1038/s41366-023-01444-9

22. Chang E, Varghese M, Singer K. Gender and Sex Differences in Adipose Tissue. Curr Diab Rep. 2018;18(9),69-89. doi: https://doi.org/10.1007/s11892-018-1031-3

23. Małodobra-Mazur M, Cierzniak A, Pawełka D, Kaliszewski K, Rudnicki J, Dobosz T. Metabolic Differences between Subcutaneous and Visceral Adipocytes Differentiated with an Excess of Saturated and Monounsaturated Fatty Acids. Genes (Basel). 2020;11(9):1092. doi: https://doi.org/10.3390/genes11091092

24. Hansen GT, Sobreira DR, Weber ZT, Thornburg AG, Aneas I, et al. Genetics of sexually dimorphic adipose distribution in humans. Nat Genet. 2023;55(3):461-470. doi: https://doi.org/10.1038/s41588-023-01306-0

25. Hai P. Nguyen, Aki Ushiki, Rory Sheng, Cassidy Biellak, Kelly An, et al. ADGRG6 promotes adipogenesis and is involved in sex-specific fat distribution. bioRxiv. 2022.06.24.497411; doi: https://doi.org/10.1101/2022.06.24.497411

26. Bianconi E, Casadei R, Frabetti F, Ventura C, Facchin F, Canaider S. Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells. Genes. 2020;11(8):909-1011. doi: https://doi.org/10.3390/genes11080909

27. Xiao T, Liu L, Li H, Sun Y, Luo H, Li T, Wang S, Dalton S, Zhao RC, Chen R. Long Noncoding RNA ADINR Regulates Adipogenesis by Transcriptionally Activating C/EBPα. Stem Cell Reports. 2015;5(5):856–865. doi: https://doi.org/10.1016/j.stemcr.2015.09.007.

28. Erdos E, Divoux A, Sandor K, Halasz L, Smith SR, Osborne TF. Unique role for lncRNA HOTAIR in defining depot-specific gene expression patterns in human adipose-derived stem cells. Genes Dev. 2022;36(9-10):566-581. doi: https://doi.org/10.1101/gad.349393.122

29. Sun J, Ruan Y, Wang M, et al. Differentially expressed circulating LncRNAs and mRNA identified by microarray analysis in obese patients. Sci Rep. 2016. doi: https://doi.org/10.1038/srep35421

30. Yang Y, Fan J, Xu H, Fan L, Deng L, Li J, Li D, Li H, Zhang F, Zhao RC. Long noncoding RNA LYPLAL1-AS1 regulates adipogenic differentiation of human mesenchymal stem cells by targeting desmoplakin and inhibiting the Wnt/β-catenin pathway. Cell Death Discovery. 2021;7(1):105-121. doi: https://doi.org/10.1038/s41420-021-00500-5

31. Kerr AG, Wang Z, Wang N, Kwok KHM, Jalkanen J, et al. The long noncoding RNA ADIPINT regulates human adipocyte metabolism via pyruvate carboxylase. Nature Communications. 2022;13(1):2958. doi: https://doi.org/10.1038/s41467-022-30620-0

32. Wang J, Hua L, Chen J, Zhang J, Bai X, et al. Identification and characterization of long non-coding RNAs in subcutaneous adipose tissue from castrated and intact full-sib pair Huainan male pigs. BMC Genomics. 2017;18:542. doi: https://doi.org/10.1186/s12864-017-3907-z

33. Cejkova S, Kubatova H, Thieme F, Janousek L, Fronek J, Poledne R, Kralova Lesna I. The effect of cytokines produced by human adipose tissue on monocyte adhesion to the endothelium. Cell Adh Migr. 2019;13(1):293-302 doi: https://doi.org/10.1080/19336918.2019.1644856

34. Yang Z, Wei Z, Wu X, Yang H. Screening of exosomal miRNAs derived from subcutaneous and visceral adipose tissues: Determination of targets for the treatment of obesity and associated metabolic disorders. Mol Med Rep. 2018;18(3):3314-3324. doi: https://doi.org/10.3892/mmr.2018.9312

35. Meerson A, Traurig M, Ossowski V, Fleming JM, Mullins M, Baier LJ. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. A. Diabetologia. 2013;56(9):1971-1979. doi: https://doi.org/10.1007/s00125-013-2950-9

36. Kim C, Lee H, Cho YM, Kwon OJ, Kim W, Lee EK. TNFα-induced miR-130 resulted in adipocyte dysfunction during obesity-related inflammation. FEBS Letters. 2013;587(23):3853-3858

37. Mysore R, Ortega FJ, Latorre J, Ahonen M, Savolainen- Peltonen H, et al. MicroRNA-221-3p Regulates Angiopoietin- Like 8 (ANGPTL8) Expression in Adipocytes. The Journal of Clinical Endocrinology & Metabolism. 2017;102(11):4001-4012. doi: https://doi.org/10.1210/jc.2017-00453

38. Lorente-Cebrián S, Mejhert N, Kulyté A, Laurencikiene J, Åström G, et al. MicroRNAs Regulate Human Adipocyte Lipolysis: Effects of miR-145 Are Linked to TNF-α. PLoS One. 2014;9:e86800. doi: https://doi.org/10.1371/journal.pone.0086800

39. Duan SZ, Usher MG, Foley EL 4th, Milstone DS, Brosius FC 3rd, Mortensen RM. Sex dimorphic actions of rosiglitazone in generalized peroxisome proliferator-activated receptor-γ (PPAR-γ)-deficient mice. Diabetologia. 2010;53(7):1493-505. doi: https://doi.org/10.1007/s00125-010-1748-2

40. Palavicini JP, Chavez-Velazquez A, Fourcaudot M, Tripathy D, Pan M, et al. The Insulin-Sensitizer Pioglitazone Remodels Adipose Tissue Phospholipids in Humans. Frontiers in Physiology. 2021;12:784391. doi: https://doi.org/10.3389/fphys.2021.784391

41. Serna A, Marhuenda J, Arcusa R, Pérez-Piñero S, Sánchez-Macarro M, et al. Effectiveness of a polyphenolic extract (Lippia citriodora and Hibiscus sabdariffa) on appetite regulation in overweight and obese grade I population: an 8-week randomized, double-blind, cross-over, placebo-controlled trial. Eur J Nutr. 2022;61(2):825-841. doi: https://doi.org/10.1007/s00394-021-02678-x

42. Hayamizu K, Ishii Y, Kaneko I, Shen M, Okuhara Y, et al. Effects of garcinia cambogia (Hydroxycitric Acid) on visceral fat accumulation: a double-blind, randomized, placebocontrolled trial. Curr Ther Res Clin Exp. 2003;64(8):551-67. doi: https://doi.org/10.1016/j.curtheres.2003.08.006

43. Thounaojam MC, Jadeja RN, Ramani UV, Devkar RV, Ramachandran AV. Sida rhomboidea. Roxb Leaf Extract Down-Regulates Expression of PPARγ2 and Leptin Genes in High Fat Diet Fed C57BL/6J Mice and Retards in Vitro 3T3L1 Pre-Adipocyte Differentiation. Int J Mol Sci. 2011;12(7):4661-77. doi: https://doi.org/10.3390/ijms12074661

44. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. The American Journal of Clinical Nutrition. 1999;70(6):1040-5. doi: https://doi.org/10.1093/ajcn/70.6.1040

45. Henry CJ, Emery B. Effect of spiced food on metabolic rate. Human Nutrition: Clinical Nutrition. 1986;40(2):165-8

46. Bécsi B, Kónya Z, Boratkó A, Kovács K, Erdődi F. Epigallocatechine- 3-gallate Inhibits the Adipogenesis of Human Mesenchymal Stem Cells via the Regulation of Protein Phosphatase- 2A and Myosin Phosphatase. Cells. 2022;11(10):1704. doi: https://doi.org/10.3390/cells11101704

47. Land Lail H, Feresin RG, Hicks D, Stone B, Price E, Wanders D. Berries as a Treatment for Obesity-Induced Inflammation: Evidence from Preclinical Models. Nutrients. 2021;13(2):334. doi: https://doi.org/10.3390/nu13020334

48. Cortez-Navarrete M, Pérez-Rubio KG, Escobedo-Gutiérrez MJ. Role of Fenugreek, Cinnamon, Curcuma longa, Berberine and Momordica charantia in Type 2 Diabetes Mellitus Treatment: A Review. Pharmaceuticals (Basel). 2023;16(4):515. doi: https://doi.org/10.3390/ph16040515

49. Den Hartogh DJ, Gabriel A, Tsiani E. Antidiabetic Properties of Curcumin II: Evidence from In Vivo Studies. Nutrients. 2019;12(1):58. doi: https://doi.org/10.3390/nu12010058

50. Feng W, Ao H, Peng C. Gut Microbiota, Short-Chain Fatty Acids, and Herbal Medicines. Front Pharmacol. 2018;23(9):1354. doi: https://doi.org/10.3389/fphar.2018.01354

51. Aryal D, Joshi S, Thapa NK, Chaudhary P, Basaula S, et al. Dietary phenolic compounds as promising therapeutic agents for diabetes and its complications: A comprehensive review. Food Sci Nutr. 2024;12(5):3025-3045. doi: https://doi.org/10.1002/fsn3.3983

52. Karmase A, Birari R, Bhutani KK. Evaluation of anti-obesity effect of Aegle marmelos leaves. Phytomedicine. 2013;20(10):805-12. doi: https://doi.org/10.1016/j.phymed.2013.03.014

53. Lee GH, Lee HY, Lim YJ, Kim JH, Jung SJ, Jung ES, et al. Angelica gigas extract inhibits acetylation of eNOS via IRE1α sulfonation/ RIDD-SIRT1-mediated posttranslational modification in vascular dysfunction. Aging (Albany NY). 2023;15(23):13608-13627. doi: https://doi.org/10.18632/aging.205343

54. Saleem M, Mazhar Fareed M, Salman Akbar Saani M, Shityakov S. Network pharmacology and multitarget analysis of Nigella sativa in the management of diabetes and obesity: a computational study. J Biomol Struct Dyn. 2024;42(9):4800-4816. doi: https://doi.org/10.1080/07391102.2023.2222837

55. Patil RS, Mane MP, Magdum AB, Nimbalkar MS. Dioscorea oppositifolia plant extract reduces adipogenesis by down-regulating PPARγ, C/EBPα, SREBP-1, and FASN in 3T3L1 pro-adipocytes. Phytomedicine Plus. 2022. doi: https://doi.org/10.1016/j.phyplu.2022.100293

56. Markham A. Setmelanotide: First Approval. Drugs. 2021;81(3):397-403. doi: https://doi.org/10.1007/s40265-021-01470-9

57. Kantowski T, Schulze Zur Wiesch C, Aberle J, Lautenbach A. Obesity management: sex-specific considerations. Arch Gynecol Obstet. 2024;309(5):1745-1752. doi: https://doi.org/10.1007/s00404-023-07367-0

58. Rentzeperi E, Pegiou S, Koufakis T, Grammatiki M, Kotsa K. Sex Differences in Response to Treatment with Glucagonlike Peptide 1 Receptor Agonists: Opportunities for a Tailored Approach to Diabetes and Obesity Care. J Pers Med. 2022;12(3):454. doi: https://doi.org/10.3390/jpm12030454


Дополнительные файлы

1. Figure 1. Adipocytokine Signaling Pathway. From KEGG: Kyoto Encyclopedia of Genes and Genomes
Тема
Тип Исследовательские инструменты
Посмотреть (842KB)    
Метаданные ▾

Рецензия

Для цитирования:


Dzitoyeva S.G. Dimorphic Nature of Adipose Tissue and Role of Herbal Extracts in Lipids Metabolism. Ожирение и метаболизм. 2024;21(4):365-372. https://doi.org/10.14341/omet13096

For citation:


Dzitoyeva S.G. Dimorphic Nature of Adipose Tissue and Role of Herbal Extracts in Lipids Metabolism. Obesity and metabolism. 2024;21(4):365-372. https://doi.org/10.14341/omet13096

Просмотров: 537


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)