Prospects for the use of polyphenols in patients with bronchial asthma and obesity
https://doi.org/10.14341/omet13092
Abstract
Asthma and obesity are diseases characterized by variability in the course and possible complications, the frequency of which is steadily increasing from year to year. The correlation between obesity and asthma is still an acute problem of the health care system. Representing very common diseases, they aggravate each other’s course and significantly worsen the quality of life. Polyphenols are a promising option to solve the existing problem. These low molecular weight compounds are biologically active substances capable of influencing on many metabolic processes in the body. This review demonstrates the multiple properties of these unique micronutrients, including antioxidant, anti-carcinogenic, anti-inflammatory, metabolic, neuroprotective and many others. The integration of polyphenols into the daily diet can contribute to strengthening public health, reducing the frequency and progression of socially significant diseases, and using these compounds in diseases such as asthma and obesity, according to numerous modern studies, it is possible to achieve a significant therapeutic effect at all. The purpose of this literature review is to trace the correlation between the effect of using polyphenols and changes in the course of the disease and quality of life in patients with asthma on the background of obesity, based on facts from advanced sources.
About the Authors
V. A. BeloglazovRussian Federation
Vladimir A. Beloglazov, MD, PhD, Professor, Department of Internal Medicine №2
5/7 Lenin Boulevard street, 295051 Simferopol
Competing Interests:
None
I. A. Yatskov
Russian Federation
Igor A. Yatskov, PhD, Department of Internal Medicine №2
5/7 Lenin Boulevard street, 295051 Simferopol
Competing Interests:
None
A. A. Moik
Russian Federation
Anastasia A. Moik, Department of Internal Medicine №2
5/7 Lenin Boulevard street, 295051 Simferopol
Competing Interests:
None
Andrey Vladimirovich Moik
Russian Federation
Andrey V. Moik, Department of Internal Medicine №2
5/7 Lenin Boulevard street, 295051 Simferopol
Competing Interests:
None
References
1. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2020. Available from: www.ginasthma.org
2. NCD Risk Factor Collaboration. Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population representative studies with 222 million children, adolescents, and adults. The Lancet. 2024. doi: https://doi.org/10.1016/S0140-6736(23)02750-2
3. Kytikova OYu, Novgorodtseva P., Antonyuk MV, et al. The role of neurotrophic growth factors in the pathophysiology of bronchial asthma associated with obesity. Bulletin of Siberian Medicine. 2021;20 (1):158–167. (In Russ.). doi: https://doi.org/10.20538/1682-0363-2021-1-158-167
4. Patrakeeva VP, Shtaborov VA. Nutrition and the state of the intestinal microflora in the formation of the metabolic syndrome. Obesity and metabolism. 2022;19(3):292-299. (In Russ.) doi: https://doi.org/10.14341/omet12893
5. Yahfoufi N, Alsadi N, Jambi M, et al. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients. 2018;10(11):1618. doi: https://doi.org/10.3390/nu10111618.
6. Cao Y, Han S, Lu H, et al. Targeting mTOR Signaling by Dietary Polyphenols in Obesity Prevention. Nutrients. 2022;14(23):5171. doi: https://doi.org/10.3390/nu14235171
7. Castro-Barquero S, Lamuela-Raventós RM, Doménech M, et al. Relationship between Mediterranean Dietary Polyphenol Intake and Obesity. Nutrients. 2018;10(10):1523-1535. doi: https://doi.org/10.3390/nu10101523
8. Bobrysheva TN, Anisimov GS, Zolotoreva MS, et al. Polyphenols as promising bioactive compounds // Voprosy pitaniia. 2023;92(1):92-107. (In Russ.) doi: https://doi.org/10.33029/0042-8833-2023-92-1-92-107
9. Miethe S, Karsonova A, Karaulov A, et al. Obesity and asthma. J Allergy Clin Immunol. 2020;146(4):685-693. doi: https://doi.org/10.1016/j.jaci.2020.08.011
10. Maniscalco M, Paris D, Melck DJ, et al. Coexistence of obesity and asthma determines a distinct respiratory metabolic phenotype. J Allergy Clin Immunol. 2017;139(5):1536-1547. doi: https://doi.org/10.1016/j.jaci.2016.08.038.
11. Haneen SD, Martin CM. Is the β3-Adrenoceptor a Valid Target for the Treatment of Obesity and/or Type 2 Diabetes? Biomolecules. 2023;13(12):1714. doi: https://doi.org/10.3390/biom13121714
12. Aditya SL, Ryota O, Tomoya H, et al. Exploring the association between asthma and chronic comorbidities: impact on clinical outcomes. Front Med (Lausanne). 2024;11:1305638. doi: https://doi.org/10.3389/fmed.2024.1305638
13. Nikos S, Erika G, Aruna C, et al. The Role of Childhood Asthma in Obesity Development: A Nationwide US Multicohort Study. Epidemiology. 2022;33(1):131-140. doi: https://doi.org/10.1097/EDE.0000000000001421
14. Contreras ZA, Chen Z, Roumeliotaki T, et al. Does early onset asthma increase childhood obesity risk? A pooled analysis of 16 European cohorts. Eur Respir J. 2018;52(3):1800504. doi: https://doi.org/10.1183/13993003.00504-2018
15. Luiz HCV, Sarah RDF, Maria da CCS, et al. Uncovering the Role of Oxidative Imbalance in the Development and Progression of Bronchial Asthma. Oxid Med Cell Longev. 2021;6692110. doi: https://doi.org/10.1155/2021/6692110
16. Ito T, Kubo M, Nagaoka K, et al. Early obesity leads to increases in hepatic arginase I and related systemic changes in nitric oxide and L-arginine metabolism in mice. J Physiol Biochem. 2018;74(1):9-16. doi: https://doi.org/10.1007/s13105-017-0597-6
17. Khramova RN, Tush EV, Khramov AA, et al. Relationship of Nutritional Status and Spirometric Parameters in Children with Bronchial Asthma. Sovrem Tekhnologii Med. 2021;12(3):12-23. doi: https://doi.org/10.17691/stm2020.12.3.02
18. Reyes-Angel J, Kaviany P, Rastogi D, et al. Obesityrelated asthma in children and adolescents. Lancet Child Adolesc Health. 2022;6(10):713-724. doi: https://doi.org/10.1016/S2352-4642(22)00185-7
19. Dixon AE, Que LQ. Obesity and Asthma. Semin Respir Crit Care Med. 2022;43(5):662-674. doi: https://doi.org/10.1055/s-0042-1742384
20. Alhammad SA, Alwadeai KS. All Types Obesity and Physical Inactivity Associated with the Risk of Activity of Daily Living Limitations Among People with Asthma. J Multidiscip Healthc. 2022;15:1573-1583. doi: https://doi.org/10.2147/JMDH.S368660
21. Dzah CS, Asante-Donyinah D, Letsyo E, et al. Dietary Polyphenols and Obesity: A Review of Polyphenol Effects on Lipid and Glucose Metabolism, Mitochondrial Homeostasis, and Starch Digestibility and Absorption. Plant Foods Hum Nutr. 2023;78(1):1-12. doi: https://doi.org/10.1007/s11130-022-01034-6
22. Ohishi T, Fukutomi R, Shoji Y, et al. The beneficial effects of principal polyphenols from green tea, coffee, wine, and curry on obesity. Molecules. 2021;26(2):453-474. doi: https://doi.org/10.3390/molecules26020453
23. de Araújo FF, de Paulo Farias D, Neri-Numa IA, et al. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021;338:127535. doi: https://doi.org/10.1016/j.foodchem.2020.127535
24. Xu H, Zhong X, Wang T, et al. (-)-Epigallocatechin-3-Gallate Reduces Perfluorodecanoic Acid-Exacerbated Adiposity and Hepatic Lipid Accumulation in High-Fat Diet-Fed Male C57BL/6J Mice. Molecules. 2023;28(23):7832. doi: https://doi.org/10.3390/molecules28237832
25. Oruganti L, Reddy Sankaran K, Dinnupati HG, et al. Anti-adipogenic and lipid-lowering activity of piperine and epigallocatechin gallate in 3T3-L1 adipocytes. Arch Physiol Biochem. 2023;129(5):1152-1159. doi: https://doi.org/10.1080/13813455.2021.1908366
26. Ngamsamer С, Sirivarasai J, Sutjarit N. The Benefits of Anthocyanins against Obesity-Induced Inflammation. Biomolecules. 2022;12(6):852. doi: https://doi.org/10.3390/biom12060852
27. Ohmae S, Akazawa S, Takahashi T, et al. Quercetin attenuates adipogenesis and fibrosis in human skeletal muscle. Biochem Biophys Res Commun. 2022;615:24-30. doi: https://doi.org/10.1016/j.bbrc.2022.05.033
28. Suh JH, Wang Y, Ho C-T. Natural dietary products and their effects on appetite control. J Agric Food Chem. 2018;66(1):36-39. doi: https://doi.org/10.1021/acs.jafc.7b05104
29. Gowd V, Karim N, Shishir MRI, et al. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends in Food Science & Technology. 2019;93:81-93. doi: https://doi.org/10.1016/j.tifs.2019.09.005
30. Sousa JN, Paraíso AF, Andrade J, et al. Oral gallic acid improve liver steatosis and metabolism modulating hepatic lipogenic markers in obese mice. Exp Gerontol. 2020;134(10):110881. doi: https://doi.org/10.1016/j.exger.2020.110881
31. He X, Zheng S, Sheng Y, et al. Chlorogenic acid ameliorates obesity by preventing energy balance shift in high-fat diet induced obese mice. J Sci Food Agric. 2021;101(2):631-637. doi: https://doi.org/10.1002/jsfa.10675
32. Zhou Q, Wang Y, Han X, et al. Efficacy of resveratrol supplementation on glucose and lipid metabolism: A metaanalysis and systematic review. Front Physiol. 2022;13:795980. doi: https://doi.org/10.3389/fphys.2022.795980
33. Jiang Q, Zhang S, Gao X, et al. Resveratrol Inhibits Proliferation and Differentiation of Porcine Preadipocytes by a Novel LincRNAROFM/ miR-133b/AdipoQ Pathway. Foods. 2022;11(17):2690. doi: https://doi.org/10.3390/foods11172690
34. Koundouros N, Blenis J. Targeting mTOR in the Context of Diet and Whole-body Metabolism. Endocrinology. 2022;163(6):bqac041. doi: https://doi.org/10.1210/endocr/bqac041
35. Szwed A, Kim E, Jacinto E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol Rev. 2021;101(3):1371–1426. doi: https://doi.org/10.1152/physrev.00026.2020
36. Cani PD, Van Hul M, Lefort C, et al. Microbial regulation of organismal energy homeostasis. Nat Metab. 2019;1(1):34-36. doi: https://doi.org/10.1038/s42255-018-0017-4
37. Chávez-Carbajal A, Nirmalkar K, Pérez-Lizaur A, et al. Gut microbiota and predicted metabolic pathways in a sample of mexican women affected by obesity and obesity plus metabolic syndrome. Int J Mol Sci. 2019;20(2):438. doi: https://doi.org/10.3390/ijms20020438
38. Mulders RJ, de Git KCG, Schéle E, et al. Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obes Rev. 2018;19(4):435-451. doi: https://doi.org/10.1111/obr.12661
39. Corrêa TAF, Rogero MM, Hassimotto NMA, et al. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front Nutr. 2019;6:188. doi: https://doi.org/10.3389/fnut.2019.00188
40. Vanweert F, Schrauwen P, Phielix E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr Diabetes. 2022;12(1):35. doi: https://doi.org/10.1038/s41387-022-00213-3
41. Leis K, Gałazka P, Kazik J, et al. Resveratrol in the treatment of asthma based on an animal model. Postepy Dermatol Alergol. 2022;39(3):433-438. doi: https://doi.org/10.5114/ada.2022.117543
42. Chauhan PS, Jaiswal A, Subhashini, et al. Combination Therapy with Curcumin Alone Plus Piperine Ameliorates Ovalbumin-Induced Chronic Asthma in Mice. Inflammation. 2018;41(5):1922-1933. doi: https://doi.org/10.1007/s10753-018-0836-1
43. Das A, Pathak MP, Pathak K, et al. Herbal medicine for the treatment of obesity-associated asthma: a comprehensive review. Front Pharmacol. 2023;14:1186060. doi: https://doi.org/10.3389/fphar.2023.1186060
44. Hosawi S. Current Update on Role of Hesperidin in Inflammatory Lung Diseases: Chemistry, Pharmacology, and Drug Delivery Approaches. Life (Basel). 2023;13(4):937. doi: https://doi.org/10.3390/life13040937
45. Muhammad H, Salahuddin Z, Akhtar T, et al. Immunomodulatory effect of glabridin in ovalbumin induced allergic asthma and its comparison with methylprednisolone in a preclinical rodent model. J Cell Biochem. 2023;124(10):1503-1515. doi: https://doi.org/10.1002/jcb.30459
46. Yang N, Shang YX. Epigallocatechin gallate ameliorates airway inflammation by regulating Treg/Th17 imbalance in an asthmatic mouse model. Int Immunopharmacol. 2019;72(3):422-428. doi: https://doi.org/10.1016/j.intimp.2019.04.044
47. Dębinska A, Sozanska B. Dietary Polyphenols-Natural Bioactive Compounds with Potential for Preventing and Treating Some Allergic Conditions. Nutrients. 2023;15(22):4823. doi: https://doi.org/10.3390/nu15224823
48. Kim CY, Kim JW, Kim JH, et al. Inner shell of the chestnut (Castanea crenatta) suppresses inflammatory responses in ovalbumin-induced allergic asthma mouse model. Nutrients. 2022;14(10):2067. doi: https://doi.org/10.3390/nu14102067
49. Huang Q, Han L, Lv R, et al. Magnolol exerts anti-asthmatic effects by regulating Janus kinase-signal transduction and activation of transcription and Notch signaling pathways and modulating Th1/Th2/Th17 cytokines in ovalbumin-sensitized asthmatic mice. Korean J Physiol Pharmacol. 2019;23(4):251-261. doi: https://doi.org/10.4196/kjpp.2019.23.4.251
50. Jafarinia M, Hosseini MS, Kasiri N, et al. Quercetin with the potential effect on allergic diseases. Allergy Asthma Clin Immunol. 2020;16:36. doi: https://doi.org/10.1186/s13223-020-00434-0
Supplementary files
|
1. Figure 1. The complex influence of the inflammatory, metabolic and mechanical pathways contributes to the progression of asthma in obese patients. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
|
2. Figure 2. The effect on the transmission of mTOR signals using dietary polyphenols in the prevention of obesity. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(447KB)
|
Indexing metadata ▾ |
Review
For citations:
Beloglazov V.A., Yatskov I.A., Moik A.A., Moik A.V. Prospects for the use of polyphenols in patients with bronchial asthma and obesity. Obesity and metabolism. 2024;21(4):357-364. (In Russ.) https://doi.org/10.14341/omet13092

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).