Preview

Obesity and metabolism

Advanced search

The potential of DNA methylation markers in the study of obesity

https://doi.org/10.14341/omet13058

Abstract

Obesity is a complex, heterogeneous, actively progressive disease manifested by excessive formation of adipose tissue in the body and usually has a high cardiometabolic risk and specific complications. Currently, new data are emerging that explain the pathogenesis of obesity not only by genetic variations and imbalance between energy intake and expenditure, but also by the influence of epigenetic mechanisms, such as DNA methylation. DNA methylation is the most studied epigenetic modification, whose status in the cell can be altered by various external and internal environmental factors, including diet, lifestyle, and hormones. These changes may lead to dysregulation of genes responsible for metabolic processes associated with the development of obesity. However, studies investigating epigenetic marks as potential mediators of obesity are heterogeneous in design, methodology, and results. This review discusses a conceptual framework analyzing the relationship between DNA methylation, obesity, inflammation, and response to weight loss, including after bariatric surgery, as well as material selection and methodology issues to consider when designing studies in this area.

About the Authors

A. F. Nikolaeva
Research Centre for Medical Genetics
Russian Federation

Aleksandra F. Nikolaeva

1 Moskvorechye st., 115522 Moscow


Competing Interests:

Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Н.Г. Мокрышевой



K. O. Petrova
Research Centre for Medical Genetics
Russian Federation

Kristina O. Petrova

Moscow


Competing Interests:

Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Н.Г. Мокрышевой



O. V. Vasyukova
Endocrinology Research Centre
Russian Federation

Olga V. Vasyukova - MD, PhD.

Moscow


Competing Interests:

Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Н.Г. Мокрышевой



R. M. Guseinova
Endocrinology Research Centre
Russian Federation

Raisat M. Guseinova - MD; Scopus Author ID: 58077013800; Researcher ID: HDO-1221-2022.

Moscow


Competing Interests:

Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Н.Г. Мокрышевой



I. R. Minniakhmetov
Endocrinology Research Centre
Russian Federation

Ildar R. Minniakhmetov - PhD in biology.

Moscow


Competing Interests:

Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Н.Г. Мокрышевой



R. I. Khusainova
Endocrinology Research Centre
Russian Federation

Rita I. Khusainova - MD, PhD in biology.

Moscow


Competing Interests:

Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Н.Г. Мокрышевой



N. G. Mokrysheva
Endocrinology Research Centre
Russian Federation

Natalia G. Mokrysheva - MD, PhD, Professor.

Moscow


Competing Interests:

Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Н.Г. Мокрышевой



V. O. Sigin
Research Centre for Medical Genetics
Russian Federation

Vladimir O. Sigin - PhD in biology.

Moscow


Competing Interests:

Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Н.Г. Мокрышевой



References

1. Voruganti VS. Precision Nutrition: Recent Advances in Obesity. Physiology. 2023;38(1):42-50. doi: https://doi.org/10.1152/physiol.00014.2022

2. Silventoinen K, Jelenkovic A, Sund R, et al. Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual-based pooled analysis of 45 twin cohorts participating in the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) study. Am J Clin Nutr. 2016;104(2):371-379. doi: https://doi.org/10.3945/AJCN.116.130252

3. Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197-206. doi: https://doi.org/10.1038/nature14177

4. Trerotola M, Relli V, Simeone P, Alberti S. Epigenetic inheritance and the missing heritability. Hum Genomics. 2015;9(1):17. doi: https://doi.org/10.1186/s40246-015-0041-3

5. Heikkinen A, Bollepalli S, Ollikainen M. The potential of DNA methylation as a biomarker for obesity and smoking. J Intern Med. 2022;292(3):390. doi: https://doi.org/10.1111/JOIM.13496

6. Agha G, E Houseman A, Kelsey KT, et al. Adiposity is associated with DNA methylation profile in adipose tissue. Int J Epidemiol. 2015;44(4):1277-1287. doi: https://doi.org/10.1093/IJE/DYU236

7. Trang K, Grant SFA. Genetics and epigenetics in the obesity phenotyping scenario. Rev Endocr Metab Disord. 2023;24(5):775-793. doi: https://doi.org/10.1007/s11154-023-09804-6

8. Maugeri A. The Effects of Dietary interventions on DNA methylation: Implications for obesity management. Int J Mol Sci. 2020;21(22):1-17. doi: https://doi.org/10.3390/IJMS21228670

9. Bekdash RA. Methyl donors, epigenetic alterations, and brain health: understanding the connection. Int J Mol Sci. 2023;24(3):2346. doi: https://doi.org/10.3390/ijms24032346

10. Mahmoud A, Ali M. Methyl donor micronutrients that modify DNA methylation and cancer outcome. Nutrients. 2019;11(3):608. doi: https://doi.org/10.3390/nu11030608

11. Bray GA, Frühbeck G, Ryan DH, Wilding JPH. Management of obesity. Lancet. 2016;387(10031):1947-1956. doi: https://doi.org/10.1016/S0140-6736(16)00271-3

12. Lurbe E, Aguilar F, Lvarez J, et al. Determinants of cardiometabolic risk factors in the first decade of life: A longitudinal study starting at birth. Hypertension. 2018;71(3):437-443. doi: https://doi.org/10.1161/HYPERTENSIONAHA.117.10529

13. Gaillard R, Steegers EAP, Duijts L, et al. Childhood cardiometabolic outcomes of maternal obesity during pregnancy: the Generation R Study. Hypertension. 2014;63(4):683-691. doi: https://doi.org/10.1161/HYPERTENSIONAHA.113.02671

14. Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105(44):17046-17049. doi: https://doi.org/10.1073/PNAS.0806560105

15. Smith FM, Garfield AS, Ward A. Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res. 2006;113(1-4):279-291. doi: https://doi.org/10.1159/000090843

16. Heijmans BT, Kremer D, Tobi EW, et al. Heritable rather than agerelated environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet. 2007;16(5):547-554. doi: https://doi.org/10.1093/hmg/ddm010

17. Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev. 2006;82(8):485-491. doi: https://doi.org/10.1016/j.earlhumdev.2006.07.001

18. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72(1):219-246. doi: https://doi.org/10.1146/annurev-physiol-021909-135846

19. Yudaeva AD, Stafeev IS, Michurina SS, et al. The interactions between inflammation and insulin resistance: molecular mechanisms in insulin-producing and insulin-dependent tissues. Diabetes Mellit. 2023;26(1):75-81. (In Russ.). doi: https://doi.org/10.14341/DM12981

20. Ali MM, Naquiallah D, Qureshi M, et al. DNA methylation profile of genes involved in inflammation and autoimmunity correlates with vascular function in morbidly obese adults. Epigenetics. 2022;17(1):93-109. doi: https://doi.org/10.1080/15592294.2021.1876285

21. Mathis D, Shoelson SE. Immunometabolism: an emerging frontier. Nat Rev Immunol. 2011;11(2):81-83. doi: https://doi.org/10.1038/nri2922

22. Kaikkonen KM, Korpelainen R, Vanhala ML, et al. Long‐term effects on weight loss and maintenance by intensive start with diet and exercise. Scand J Med Sci Sports. 2023;33(3):246-256. doi: https://doi.org/10.1111/sms.14269

23. Sánchez EC, Barajas‐Olmos F, Baca P, et al. DNA methylation remodeling after bariatric surgery correlates with clinical parameters. Adv Biol. 2023;7(9). doi: https://doi.org/10.1002/adbi.202300001

24. Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13(1):86. doi: https://doi.org/10.1186/1471-2105-13-86

25. Lehmann-Werman R, Neiman D, Zemmour H, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci. 2016;113(13). doi: https://doi.org/10.1073/pnas.1519286113

26. Bacos K, Gillberg L, Volkov P, et al. Blood-based biomarkers of ageassociated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun. 2016;7(1):11089. doi: https://doi.org/10.1038/ncomms11089

27. Ray A, Bonorden MJL, Pandit R, et al. Infections and immunity: associations with obesity and related metabolic disorders. J Pathol Transl Med. 2023;57(1):28-42. doi: https://doi.org/10.4132/JPTM.2022.11.14

28. Zhu X, Chen Z, Shen W, et al. Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther. 2021;6(1):245. doi: https://doi.org/10.1038/s41392-021-00646-9

29. Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res. 2021;70(1):29-49. doi: https://doi.org/10.1007/S00011-020-01425-Y

30. Fogel O, Richard-Miceli C, Tost J. Epigenetic changes in chronic inflammatory diseases. Adv Protein Chem Struct Biol. 2017;(106):139-189. doi: https://doi.org/10.1016/BS.APCSB.2016.09.003

31. Richard C, Wadowski M, Goruk S, et al. Individuals with obesity and type 2 diabetes have additional immune dysfunction compared with obese individuals who are metabolically healthy. BMJ Open Diabetes Res Care. 2017;5(1):e000379. doi: https://doi.org/10.1136/bmjdrc-2016-000379

32. Suárez R, Chapela SP, Álvarez-Córdova L, et al. Epigenetics in Obesity and Diabetes Mellitus: New Insights. Nutrients. 2023;15(4):811. doi: https://doi.org/10.3390/nu15040811

33. Zatterale F, Raciti GA, Prevenzano I, et al. Epigenetic reprogramming of the inflammatory response in obesity and type 2 diabetes. Biomolecules. 2022;12(7):982. doi: https://doi.org/10.3390/biom12070982

34. Samblas M, Milagro FI, Martínez A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics. 2019;14(5):421-444. doi: https://doi.org/10.1080/15592294.2019.1595297

35. Bouchard L, Rabasa-Lhoret R, Faraj M, et al. Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am J Clin Nutr. 2010;91(2):309-320. doi: https://doi.org/10.3945/AJCN.2009.28085

36. Driller K, Pagenstecher A, Uhl M, et al. Nuclear factor I X deficiency causes brain malformation and severe skeletal defects. Mol Cell Biol. 2007;27(10):3855-3867. doi: https://doi.org/10.1128/MCB.02293-06

37. Crujeiras AB, Campion J, Díaz-Lagares A, et al. Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: A translational study. Regul Pept. 2013;186:1-6. doi: https://doi.org/10.1016/j.regpep.2013.06.012

38. Shankar P, Boylan M, Sriram K. Micronutrient deficiencies after bariatric surgery. Nutrition. 2010;26(11-12):1031-1037. doi: https://doi.org/10.1016/J.NUT.2009.12.003

39. Benton MC, Johnstone A, Eccles D, et al. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol. 2015;16(1):8. doi: https://doi.org/10.1186/s13059-014-0569-x

40. Barres R, Kirchner H, Rasmussen M, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013;3(4):1020-1027. doi: https://doi.org/10.1016/J.CELREP.2013.03.018

41. Fraszczyk E, Luijten M, Spijkerman AMW, et al. The effects of bariatric surgery on clinical profile, DNA methylation, and ageing in severely obese patients. Clin Epigenetics. 2020;12(1):14. doi: https://doi.org/10.1186/s13148-019-0790-2

42. Talukdar FR, Escobar Marcillo DI, Laskar RS, et al. Bariatric surgeryinduced weight loss and associated genome-wide DNA-methylation alterations in obese individuals. Clin Epigenetics. 2022;14(1):176. doi: https://doi.org/10.1186/s13148-022-01401-9

43. Simar D, Versteyhe S, Donkin I, et al. DNA methylation is altered in B and NK lymphocytes in obese and type 2 diabetic human. Metabolism. 2014;63(9):1188-1197. doi: https://doi.org/10.1016/J.METABOL.2014.05.014

44. He F, Berg A, Imamura Kawasawa Y, et al. Association between DNA methylation in obesity-related genes and body mass index percentile in adolescents. Sci Rep. 2019;9(1):2079. doi: https://doi.org/10.1038/s41598-019-38587-7

45. Hernandez JD, Tew BY, Li T, et al. A FACS-based approach to obtain viable eosinophils from human adipose tissue. Sci Rep. 2020;10(1):13210. doi: https://doi.org/10.1038/s41598-020-70093-z

46. Wang C, Wang M, Ma J. Analysis of genome-wide DNA methylation patterns in obesity. Endocr J. 2021;68(12):EJ20-0734. doi: https://doi.org/10.1507/endocrj.EJ20-0734

47. Sasaki A, Murphy KE, Briollais L, et al. DNA methylation profiles in the blood of newborn term infants born to mothers with obesity. PLoS One. 2022;17(5):e0267946. doi: https://doi.org/10.1371/journal.pone.0267946

48. Eto H, Suga H, Matsumoto D, et al. Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast Reconstr Surg. 2009;124(4):1087-1097. doi: https://doi.org/10.1097/PRS.0B013E3181B5A3F1

49. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-228. doi: https://doi.org/10.1089/107632701300062859

50. Noehammer C, Pulverer W, Hassler MR, et al. Strategies for validation and testing of DNA methylation biomarkers. Epigenomics. 2014;6(6):603-622. doi: https://doi.org/10.2217/epi.14.43

51. Frankel A. Formalin fixation in the ‘‐omics’ era: a primer for the surgeon‐scientist. ANZ J Surg. 2012;82(6):395-402. doi: https://doi.org/10.1111/j.1445-2197.2012.06092.x

52. An Y, Zhao X, Zhang Z, et al. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation. Nat Commun. 2023;14(1):287. doi: https://doi.org/10.1038/s41467-023-35959-6

53. Lima RS, de Assis Silva Gomes J, Moreira PR. An overview about DNA methylation in childhood obesity: Characteristics of the studies and main findings. J Cell Biochem. 2020;121(5-6):3042-3057. doi: https://doi.org/10.1002/jcb.29544

54. Sigin VO, Kalinkin AI, Kuznetsova EB, et al. DNA methylation markers panel can improve prediction of response to neoadjuvant chemotherapy in luminal B breast cancer. Sci Rep. 2020;10(1):9239. doi: https://doi.org/10.1038/s41598-020-66197-1

55. Day SE, Coletta RL, Kim JY, et al. Next-generation sequencing methylation profiling of subjects with obesity identifies novel gene changes. Clin Epigenetics. 2016;8(1):77. doi: https://doi.org/10.1186/s13148-016-0246-x

56. Macartney-Coxson D, Benton MC, Blick R, et al. Genome-wide DNA methylation analysis reveals loci that distinguish different types of adipose tissue in obese individuals. Clin Epigenetics. 2017;9(1):48. doi: https://doi.org/10.1186/s13148-017-0344-4

57. Shen J, Zhu B. Integrated analysis of the gene expression profile and DNA methylation profile of obese patients with type 2 diabetes. Mol Med Rep. 2018;17(6). doi: https://doi.org/10.3892/mmr.2018.8804

58. McAllan L, Baranasic D, Villicaña S, et al. Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes. Nat Commun. 2023;14(1):2784. doi: https://doi.org/10.1038/s41467-023-38439-z


Supplementary files

1. Figure 1. Summary of whole genome/wide genome methods for DNA methylation studies (adapted from Stirzaker C. et al., 2014).
Subject
Type Исследовательские инструменты
View (391KB)    
Indexing metadata ▾

Review

For citations:


Nikolaeva A.F., Petrova K.O., Vasyukova O.V., Guseinova R.M., Minniakhmetov I.R., Khusainova R.I., Mokrysheva N.G., Sigin V.O. The potential of DNA methylation markers in the study of obesity. Obesity and metabolism. 2023;20(4):301-308. (In Russ.) https://doi.org/10.14341/omet13058

Views: 1437


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)