Metabolic effects of aldosterone
https://doi.org/10.14341/omet13040
Abstract
Currently, increasing evidence shows the mutual influence of aldosterone and adipose tissue. Aldosterone excess has been reported in patients with obesity and metabolic syndrome. Aldosterone has a direct effect on adipose tissue increasing anabolic activity and expression of mineralocorticoid receptors. In turn, excessive activation of MCR leads to stimulation of adipogenesis and an increase in the volume of adipose tissue. Aldosterone excess can be considered an independent cardiovascular risk factor that affects such processes as cardiac fibrosis, nephrosclerosis, and arteriosclerosis. There is convincing evidence of higher prevalence and severity of impaired glucose homeostasis and lipid metabolism disorders among patients with primary hyperaldosteronism. Similar pathological changes are also observed in patients with obesity and metabolic syndrome. This review presents scientific data on the metabolic effects of aldosterone, in particular its effect on adipose tissue function, glucose and lipid metabolism. Treatment with mineralocorticoid receptor antagonists may provide substantial benefit in the management of metabolic syndrome, contribute to the stabilisation of glucose and lipid metabolism, improve clinical status of patients with cardiovascular diseases and reduce the risk of complications. However, available evidence from the conducted studies is not sufficient to justify introduction of such therapy into clinical practice.
About the Authors
K. V. IvashchenkoRussian Federation
Kseniya V. Ivashchenko – MD.
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А.
N. V. Mazurina
Russian Federation
Natalya V. Mazurina - MD, PhD.
Moscow
Competing Interests:
Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А.
N. M. Platonova
Russian Federation
Nadegda M. Platonova - MD, PhD.
Moscow
Competing Interests:
Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А.
E. A. Troshina
Russian Federation
Ekaterina A. Troshina - MD, PhD, Professor.
Moscow
Competing Interests:
Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А.
References
1. Funder JW, Carey RM, Mantero F, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: An endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(5):1889-1916. doi: https://doi.org/10.1210/jc.2015-4061
2. Cohn JN, Colucci W. Cardiovascular effects of aldosterone and post–acute myocardial infarction pathophysiology. Am J Cardiol. 2006;97(10):4-12. doi: https://doi.org/10.1016/j.amjcard.2006.03.004
3. Schiffrin EL. Effects of aldosterone on the vasculature. Hypertension. 2006;47(3):312-318. doi: https://doi.org/10.1161/01.HYP.0000201443.63240.a7
4. Funder JW, Carey RM, Mantero F, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: An endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(5):1889-1916. doi: https://doi.org/10.1210/jc.2015-4061
5. Cohn JN, Colucci W. Cardiovascular Effects of Aldosterone and Post–Acute Myocardial Infarction Pathophysiology. Am J Cardiol. 2006;97(10):4-12. doi: https://doi.org/10.1016/j.amjcard.2006.03.004
6. Schiffrin EL. Effects of aldosterone on the vasculature. Hypertension. 2006;47(3):312-318. doi: https://doi.org/10.1161/01.HYP.0000201443.63240.a7
7. Malik S, Wong ND, Franklin SS, et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 2004;110(10):1245-1250. doi: https://doi.org/10.1161/01.CIR.0000140677.20606.0E
8. Wolf G. After all those fat years: renal consequences of obesity. Nephrol Dial Transplant. 2003;18(12):2471-2474. doi: https://doi.org/10.1093/ndt/gfg427
9. Calhoun DA. Is there an unrecognized epidemic of primary aldosteronism? (Pro). Hypertension. 2007;50(3):447-453. doi: https://doi.org/10.1161/HYPERTENSIONAHA.106.086116
10. Kaplan NM. Is there an unrecognized epidemic of primary aldosteronism? (Con). Hypertension. 2007;50(3):454-458. doi: https://doi.org/10.1161/HYPERTENSIONAHA.106.086124
11. Melnichenko GA, Platonova NM, Beltsevich DG, et al. Primary hyperaldosteronism: diagnosis and treatment. a new look at the problem. according to the materials of the russian association of endocrinologists clinical guidelines for primary hyperaldosteronism diagnosis and treatment. Consilium Medicum. 2017;19(4):75-85. (In Russ.). doi: https://doi.org/10.26442/2075-1753_19.4.75-85
12. Milliez P, Girerd X, Plouin P-F, et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45(8):1243-1248. doi: https://doi.org/10.1016/j.jacc.2005.01.015
13. Rossi GP, Bernini G, Desideri G, et al. Renal damage in primary aldosteronism. Hypertension. 2006;48(2):232-238. doi: https://doi.org/10.1161/01.HYP.0000230444.01215.6a
14. Bender SB, McGraw AP, Jaffe IZ, Sowers JR. Mineralocorticoid receptor–mediated vascular insulin resistance. Diabetes. 2013;62(2):313-319. doi: https://doi.org/10.2337/db12-0905
15. Hawkins UA, Gomez-Sanchez EP, Gomez-Sanchez CM, GomezSanchez CE. The ubiquitous mineralocorticoid receptor: Clinical implications. Curr Hypertens Rep. 2012;14(6):573-580. doi: https://doi.org/10.1007/s11906-012-0297-0
16. Kobayashi N, Yoshida K, Nakano S, et al. Cardioprotective mechanisms of eplerenone on cardiac performance and remodeling in failing rat hearts. Hypertension. 2006;47(4):671-679. doi: https://doi.org/10.1161/01.HYP.0000203148.42892.7a
17. Nagata K, Obata K, Xu J, et al. Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and failure in lowaldosterone hypertensive rats. Hypertension. 2006;47(4):656-664. doi: https://doi.org/10.1161/01.HYP.0000203772.78696.67
18. Fallo F, Veglio F, Bertello C, et al. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab. 2006;91(2):454-459. doi: https://doi.org/10.1210/jc.2005-1733
19. Matrozova J, Steichen O, Amar L, et al. Fasting plasma glucose and serum lipids in patients with primary aldosteronism. Hypertension. 2009;53(4):605-610. doi: https://doi.org/10.1161/HYPERTENSIONAHA.108.122002
20. Monticone S, D’Ascenzo F, Moretti C, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2018;6(1):41-50. doi: https://doi.org/10.1016/S2213-8587(17)30319-4
21. Mosso LM, Carvajal CA, Maiz A, et al. A possible association between primary aldosteronism and a lower beta-cell function. Journal of hypertension. 2007;25(10):2125-2130. doi:10.1097/HJH.0b013e3282861fa4
22. Hanslik G, Wallaschofski H, Dietz A, et al. Increased prevalence of diabetes mellitus and the metabolic syndrome in patients with primary aldosteronism of the German Conn’s Registry. Eur J Endocrinol. 2015;173(5):665-675. doi: https://doi.org/10.1530/EJE-15-0450
23. Turchi F, Ronconi V, di Tizio V, et al. Primary aldosteronism and essential hypertension: Assessment of cardiovascular risk at diagnosis and after treatment. Nutr Metab Cardiovasc Dis. 2014;24(5):476-482. doi: https://doi.org/10.1016/j.numecd.2013.09.009
24. Wu V-C, Chueh S-CJ, Chen L, et al. Risk of new-onset diabetes mellitus in primary aldosteronism. J Hypertens. 2017;35(8):1698-1708. doi: https://doi.org/10.1097/HJH.0000000000001361
25. Adler GK, Murray GR, Turcu AF, et al. Primary aldosteronism decreases insulin secretion and increases insulin clearance in humans. Hypertension. 2020;75(5):1251-1259. doi: https://doi.org/10.1161/HYPERTENSIONAHA.119.13922
26. Fischer E, Adolf C, Pallauf A, et al. Aldosterone excess impairs first phase insulin secretion in primary aldosteronism. J Clin Endocrinol Metab. 2013;98(6):2513-2520. doi: https://doi.org/10.1210/jc.2012-3934
27. Komada H, Hirota Y, So A, et al. Insulin secretion and sensitivity before and after surgical treatment for aldosteroneproducing adenoma. Diabetes Metab. 2020;46(3):236-242. doi: https://doi.org/10.1016/j.diabet.2019.10.002
28. Jin HM, Zhou DC, Gu HF, et al. Antioxidant N-acetylcysteine protects pancreatic β-cells against aldosterone-induced oxidative stress and apoptosis in female db/db Mice and InsulinProducing MIN6 cells. Endocrinology. 2013;154(11):4068-4077. doi: https://doi.org/10.1210/en.2013-1115
29. Luther JM, Luo P, Kreger MT, et al. Aldosterone decreases glucose-stimulated insulin secretion in vivo in mice and in murine islets. Diabetologia. 2011;54(8):2152-2163. doi: https://doi.org/10.1007/s00125-011-2158-9
30. Chen F, Liu J, Wang Y, et al. Aldosterone induces clonal β-cell failure through glucocorticoid receptor. Sci Rep. 2015;5(1):13215. doi: https://doi.org/10.1038/srep13215
31. Shibayama Y, Wada N, Baba S, et al. Relationship between visceral fat and plasma aldosterone concentration in patients with primary aldosteronism. J Endocr Soc. 2018;2(11):1236-1245. doi: https://doi.org/10.1210/js.2018-00187
32. Chen K-M, Lee B-C, Chen P-T, et al. Evaluation of abdominal computed tomography scans for differentiating the discrepancies in abdominal adipose tissue between two major subtypes of primary aldosteronism. Front Endocrinol (Lausanne). 2021;(12):647184. doi: https://doi.org/10.3389/fendo.2021.647184
33. Ohno Y, Sone M, Inagaki N, et al. Obesity as a key factor underlying idiopathic hyperaldosteronism. J Clin Endocrinol Metab. 2018;103(12):4456-4464. doi: https://doi.org/10.1210/jc.2018-00866
34. Hirata A, Maeda N, Nakatsuji H, et al. Contribution of glucocorticoid– mineralocorticoid receptor pathway on the obesity-related adipocyte dysfunction. Biochem Biophys Res Commun. 2012;419(2):182-187. doi: https://doi.org/10.1016/j.bbrc.2012.01.139
35. Thuzar M, Stowasser M. The mineralocorticoid receptor— an emerging player in metabolic syndrome? J Hum Hypertens. 2021;35(2):117-123. doi: https://doi.org/10.1038/s41371-020-00467-3
36. Edwards CRW, Burt D, Mcintyre MA, et al. Localisation of 11β-hydroxysteroid dehydrogenase—tissue specific protector of the mineralocorticoid receptor. Lancet. 1988;332(8618):986-989. doi: https://doi.org/10.1016/S0140-6736(88)90742-8
37. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science (80-). 1988;242(4878):583-585. doi: https://doi.org/10.1126/science.2845584
38. Urbanet R, Nguyen Dinh Cat A, Feraco A, et al. Adipocyte mineralocorticoid receptor activation leads to metabolic syndrome and induction of prostaglandin D2 synthase. Hypertension. 2015;66(1):149-157. doi: https://doi.org/10.1161/HYPERTENSIONAHA.114.04981
39. Tuck ML, Sowers J, Dornfeld L, et al. The effect of weight reduction on blood pressure, plasma renin activity, and plasma aldosterone levels in obese patients. N Engl J Med. 1981;304(16):930-933. doi: https://doi.org/10.1056/NEJM198104163041602
40. Thatcher S, Yiannikouris F, Gupte M, Cassis L. The adipose renin– angiotensin system: Role in cardiovascular disease. Mol Cell Endocrinol. 2009;302(2):111-117. doi: https://doi.org/10.1016/j.mce.2009.01.019
41. Boschmann M, Ringel J, Klaus S, Sharma AM. Metabolic and hemodynamic response of adipose tissue to angiotensin II. Obes Res. 2001;9(8):486-491. doi: https://doi.org/10.1038/oby.2001.63
42. Dedov II, Mel’nichenko GA, Butrova SA. Zhirovaya tkan’ kak endokrinnyy organ. Obesity and metabolism. 2006;3(1):6-13. (In Russ.). doi: https://doi.org/10.14341/2071-8713-4937
43. Bentley-Lewis R, Adler GK, Perlstein T, et al. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J Clin Endocrinol Metab. 2007;92(11):4472-4475. doi: https://doi.org/10.1210/jc.2007-1088
44. Ho J, Keogh J, Bornstein S, et al. Moderate weight loss reduces renin and aldosterone but does not influence basal or stimulated pituitary-adrenal axis function. Horm Metab Res. 2007;39(9):694-699. doi: https://doi.org/10.1055/s-2007-985354
45. Engeli S, Böhnke J, Gorzelniak K, et al. Weight loss and the reninangiotensin-aldosterone system. Hypertension. 2005;45(3):356-362. doi: https://doi.org/10.1161/01.HYP.0000154361.47683.d3
46. Petrasek D, Jensen G, Tuck M, Stern N. effects of insulin on aldosterone production in rat zona glomerulosa cells. Life Sci. 1992;50(23):1781-1787. doi: https://doi.org/10.1016/0024-3205(92)90062-T
47. Goodfriend TL, Egan B, Stepniakowski K, Ball DL. Relationships among plasma aldosterone, high-density lipoprotein cholesterol, and insulin in humans. Hypertension. 1995;25(1):30-36. doi: https://doi.org/10.1161/01.HYP.25.1.30
48. Colussi G, Catena C, Lapenna R, et al. Insulin resistance and hyperinsulinemia are related to plasma aldosterone levels in hypertensive patients. Diabetes Care. 2007;30(9):2349-2354. doi: https://doi.org/10.2337/dc07-0525
49. Goodfriend TL, Ball DL, Egan BM, et al. Epoxy-Keto Derivative of Linoleic Acid Stimulates Aldosterone Secretion. Hypertension. 2004;43(2):358-363. doi: https://doi.org/10.1161/01.HYP.0000113294.06704.64
50. Kidambi S, Kotchen JM, Grim CE, et al. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension. 2007;49(3):704-711. doi: https://doi.org/10.1161/01.HYP.0000253258.36141.c7
51. Bochud M, Nussberger J, Bovet P, et al. Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension. 2006;48(2):239-245. doi: https://doi.org/10.1161/01.HYP.0000231338.41548.fc
52. Schinner S, Willenberg HS, Krause D, et al. Adipocyte-derived products induce the transcription of the StAR promoter and stimulate aldosterone and cortisol secretion from adrenocortical cells through the Wnt-signaling pathway. Int J Obes. 2007;31(5):864-870. doi: https://doi.org/10.1038/sj.ijo.0803508
53. Cheng L, Wang J, Dai H, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte. 2021;10(1):48-65. doi: https://doi.org/10.1080/21623945.2020.1870060
54. Chondronikola M, Volpi E, Børsheim E, et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes. 2014;63(12):4089-4099. doi: https://doi.org/10.2337/db14-0746
55. Kraus D, Jäger J, Meier B, et al. Aldosterone inhibits uncoupling protein-1, induces insulin resistance, and stimulates proinflammatory adipokines in adipocytes. Horm Metab Res. 2005;37(7):455-459. doi: https://doi.org/10.1055/s-2005-870240
56. Viengchareun S, Penfornis P, Zennaro M-C, Lombès M. Mineralocorticoid and glucocorticoid receptors inhibit UCP expression and function in brown adipocytes. Am J Physiol Metab. 2001;280(4):E640-E649. doi: https://doi.org/10.1152/ajpendo.2001.280.4.E640
57. Armani A, Cinti F, Marzolla V, et al. Mineralocorticoid receptor antagonism induces browning of white adipose tissue through impairment of autophagy and prevents adipocyte dysfunction in high‐fat‐diet‐fed mice. FASEB J. 2014;28(8):3745-3757. doi: https://doi.org/10.1096/fj.13-245415
58. McNeill BT, Suchacki KJ, Stimson RH. Mechanisms in endocrinology: Human brown adipose tissue as a therapeutic target: warming up or cooling down? Eur J Endocrinol. 2021;184(6):R243-R259. doi: https://doi.org/10.1530/EJE-20-1439
59. Thuzar M, Law WP, Dimeski G, et al. Mineralocorticoid antagonism enhances brown adipose tissue function in humans: A randomized placebo‐controlled crossover study. Diabetes, Obes Metab. 2019;21(3):509-516. doi: https://doi.org/10.1111/dom.13539
60. Rondinone CM, Rodbard D, Baker ME. Aldosterone stimulated differentiation of mouse 3T3-L1 cells into adipocytes. Endocrinology. 1993;132(6):2421-2426. doi: https://doi.org/10.1210/endo.132.6.8504747
61. Hoppmann J, Perwitz N, Meier B, et al. The balance between gluco- and mineralo-corticoid action critically determines inflammatory adipocyte responses. J Endocrinol. 2010;204(2):153-164. doi: https://doi.org/10.1677/JOE-09-0292
62. Parasiliti-Caprino M, Bollati M, et al. Adipose tissue dysfunction in obesity: Role of mineralocorticoid receptor. Nutrients. 2022;14(22):4735. doi: https://doi.org/10.3390/nu14224735
63. Guo C, Ricchiuti V, Lian BQ, et al. Mineralocorticoid Receptor Blockade Reverses Obesity-Related Changes in Expression of Adiponectin, Peroxisome Proliferator-Activated Receptor-γ, and Proinflammatory Adipokines. Circulation. 2008;117(17):2253-2261. doi: https://doi.org/10.1161/CIRCULATIONAHA.107.748640
64. Karashima S, Yoneda T, Kometani M, et al. Comparison of eplerenone and spironolactone for the treatment of primary aldosteronism. Hypertens Res. 2016;39(3):133-137. doi: https://doi.org/10.1038/hr.2015.129
65. Egan BM, Stepniakowski K, Goodfriend TL. Renin and aldosterone are higher and the hyperinsulinemic effect of salt restriction greater in subjects with risk factors clustering. Am J Hypertens. 1994;7(10_Pt_1):886-893. doi: https://doi.org/10.1093/ajh/7.10.886
66. Carroll JF, King JW, Cohen JS. Hydralazine as antihypertensive therapy in obesity-related hypertension. Int J Obes. 2004;28(3):384-390. doi: https://doi.org/10.1038/sj.ijo.0802573
67. de Paula RB, da Silva AA, Hall JE. Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension. 2004;43(1):41-47. doi: https://doi.org/10.1161/01.HYP.0000105624.68174.00
68. Ingelsson E, Pencina MJ, Tofler GH, et al. Multimarker approach to evaluate the incidence of the metabolic syndrome and longitudinal changes in metabolic risk factors. Circulation. 2007;116(9):984-992. doi: https://doi.org/10.1161/CIRCULATIONAHA.107.708537
69. Mazurina N.V. Exogenous-constitutional obesity: clinical, hormonal and biochemical parameters of treatment and monitoring personalization [dissertation]. Moscow: 2020. (In Russ.)
70. Choi KM, Ryu OH, Lee KW, et al. Serum adiponectin, interleukin-10 levels and inflammatory markers in the metabolic syndrome. Diabetes Res Clin Pract. 2007;75(2):235-240. doi: https://doi.org/10.1016/j.diabres.2006.06.019
71. Skurk T, Hauner H. Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes. 2004;28(11):1357-1364. doi: https://doi.org/10.1038/sj.ijo.0802778
72. Trost S, Pratley RE, Sobel BE. Impaired fibrinolysis and risk for cardiovascular disease in the metabolic syndrome and type 2 diabetes. Curr Diab Rep. 2006;6(1):47-54. doi: https://doi.org/10.1007/s11892-006-0052-5
73. Diehl AM, Li ZP, Lin HZ, Yang SQ. Cytokines and the pathogenesis of non-alcoholic steatohepatitis. Gut. 2005;54(2):303-306. doi: https://doi.org/10.1136/gut.2003.024935
74. Tilg H, Diehl AM. Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med. 2000;343(20):1467-1476. doi: https://doi.org/10.1056/NEJM200011163432007
75. Brea A, Mosquera D, Martín E, et al. Nonalcoholic Fatty Liver Disease Is Associated With Carotid Atherosclerosis. Arterioscler Thromb Vasc Biol. 2005;25(5):1045-1050. doi: https://doi.org/10.1161/01.ATV.0000160613.57985.18
76. Enomoto S. Effects of eplerenone on transcriptional factors and mRNA expression related to cardiac remodelling after myocardial infarction. Heart. 2005;91(12):1595-1600. doi: https://doi.org/10.1136/hrt.2004.046540
77. Egan B, Papademetriou V, Wofford M, et al. Metabolic syndrome and insulin resistance in the TROPHY sub-study: Contrasting views in patients with high-normal blood pressure. Am J Hypertens. 2005;18(1):3-12. doi: https://doi.org/10.1016/j.amjhyper.2004.08.008
78. Buglioni A, Cannone V, Sangaralingham SJ, et al. Aldosterone predicts cardiovascular, renal, and metabolic disease in the general community: A 4‐year follow‐up. J Am Heart Assoc. 2015;4(12). doi: https://doi.org/10.1161/JAHA.115.002505
79. Joseph JJ, Echouffo Tcheugui JB, et al. Renin‐angiotensinaldosterone system, glucose metabolism and incident type 2 diabetes mellitus: MESA. J Am Heart Assoc. 2018;7(17). doi: https://doi.org/10.1161/JAHA.118.009890
80. van der Heijden CDCC, ter Horst R, van den Munckhof ICL, et al. Vasculometabolic and inflammatory effects of aldosterone in obesity. J Clin Endocrinol Metab. 2020;105(8):2719-2731. doi: https://doi.org/10.1210/clinem/dgaa356
81. Varbo A, Benn M, Tybjærg-Hansen A, Nordestgaard BG. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation. 2013;128(12):1298-1309. doi: https://doi.org/10.1161/CIRCULATIONAHA.113.003008
82. Van der Zijl NJ, Moors CC, Goossens GH, et al. Does interference with the renin-angiotensin system protect against diabetes? Evidence and mechanisms. Diabetes, obesity & metabolism. 2012;14(7):586-595. doi: https://doi.org/10.1111/j.1463-1326.2012.01559.x
83. DREAM Trial Investigators, Bosch J, Yusuf S, et al. Effect of ramipril on the incidence of diabetes. N Engl J Med. 2006;355(15):1551-1562. doi: https://doi.org/10.1056/NEJMoa065061
84. NAVIGATOR Study Group, McMurray JJ, Holman RR, et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1477-1490. doi: https://doi.org/10.1056/NEJMoa1001121
85. van der Zijl NJ, Moors CCM, Goossens GH, et al. Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism. Diabetes Care. 2011;34(4):845-851. doi: https://doi.org/10.2337/dc10-2224
86. Sowers JR, Raij L, Jialal I, et al. Angiotensin receptor blocker/diuretic combination preserves insulin responses in obese hypertensives. J Hypertens. 2010;28(8):1761-1769. doi: https://doi.org/10.1097/HJH.0b013e32833af380
87. Hitomi H, Kiyomoto H, Nishiyama A, et al. Aldosterone suppresses insulin signaling via the downregulation of insulin receptor substrate-1 in vascular smooth muscle cells. Hypertension. 2007;50(4):750-755. doi: https://doi.org/10.1161/HYPERTENSIONAHA.107.093955
88. Bender SB, McGraw AP, Jaffe IZ, Sowers JR. Mineralocorticoid receptor–mediated vascular insulin resistance. Diabetes. 2013;62(2):313-319. doi: https://doi.org/10.2337/db12-0905
89. Krug AW, Stelzner L, Rao AD, et al. Effect of low dose mineralocorticoid receptor antagonist eplerenone on glucose and lipid metabolism in healthy adult males. Metabolism. 2013;62(3):386-391. doi: https://doi.org/10.1016/j.metabol.2012.08.011
90. Šindelka G, Widimský J, Haas T, et al. nsulin action in primary hyperaldosteronism before and after surgical or pharmacological treatment. Exp Clin Endocrinol Diabetes. 2012;108(01):21-25. doi: https://doi.org/10.1055/s-0032-1329211
91. Catena C, Lapenna R, Baroselli S, et al. Insulin sensitivity in patients with primary aldosteronism: A follow-up study. J Clin Endocrinol Metab. 2006;91(9):3457-3463. doi: https://doi.org/10.1210/jc.2006-0736
92. Davies JI, Band M, Morris A, Struthers AD. Spironolactone impairs endothelial function and heart rate variability in patients with Type 2 diabetes. Diabetologia. 2004;47(10):1687-1694. doi: https://doi.org/10.1007/s00125-004-1510-8
93. Polyzos SA, Kountouras J, Mantzoros CS, et al. Effects of combined low‐dose spironolactone plus vitamin E vs vitamin E monotherapy on insulin resistance, non‐invasive indices of steatosis and fibrosis, and adipokine levels in non‐alcoholic fatty liver disease: randomized controlled trial. Diabetes, Obes Metab. 2017;19(12):1805-1809. doi: https://doi.org/10.1111/dom.12989
94. Johansen ML, Schou M, Rossignol P, et al. Effect of the mineralocorticoid receptor antagonist eplerenone on liver fat and metabolism in patients with type 2 diabetes: A randomized, double‐blind, placebo‐controlled trial (MIRAD trial). Diabetes, Obes Metab. 2019;21(10):2305-2314. doi: https://doi.org/10.1111/dom.13809
Supplementary files
Review
For citations:
Ivashchenko K.V., Mazurina N.V., Platonova N.M., Troshina E.A. Metabolic effects of aldosterone. Obesity and metabolism. 2023;20(4):291-300. (In Russ.) https://doi.org/10.14341/omet13040

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).