Preview

Obesity and metabolism

Advanced search

Syndrome of increased intestinal permeability in type 1 and type 2 diabetes mellitus

https://doi.org/10.14341/omet13027

Abstract

Diabetes mellitus is a chronic disease that requires lifelong medical supervision. Hundreds of millions of people around the world and the rapidly increasing incidence of diabetes are a heavy burden on the health system. Over the past decades, many works have been published on changes in the intestinal microbiota and its permeability in diabetes mellitus of the first and second type (T1DM and T2DM). Due to changes in the permeability of the intestinal wall, its barrier function is also disrupted, as a result of which the access of infectious agents and food antigens to the immune elements of the mucous membrane is facilitated. These pathological changes can eventually lead to immune reactions with damage to pancreatic beta cells, and contribute to an increase in the production of inflammatory cytokines, followed by insulin resistance. Changes in the qualitative and quantitative composition of the microbiota play an important role in the manifestation of many autoimmune and metabolic diseases. Understanding the factors regulating the function of the intestinal barrier and the composition of the intestinal microenvironment provides important information about the interactions between luminal antigens and elements of the immune response. This review analyzes the latest advances in medicine in understanding the mechanisms linking the host organism, the intestinal microbiota and increased intestinal permeability in T1DM and T2DM.

About the Authors

Ya. V. Dvoryanchikov
SNC RF FSBI «NMRC of Endocrinology» of the Ministry of Health of Russia
Russian Federation

Yaroslav V. Dvoryanchikov.

11 Dm.Ulyanova street, 117036 Moscow


Competing Interests:

None



S. M. Deunezheva
SNC RF FSBI «NMRC of Endocrinology» of the Ministry of Health of Russia
Russian Federation

Salima M. Deunezheva.

Moscow


Competing Interests:

None



V. A. Beloglazov
Department of Internal Medicine № 2, Institute «S. I. Georgievsky Medical Academy», V. I. Vernadsky Crimean Federal University
Russian Federation

Vladimir A. Beloglazov - MD, PhD, Professor.

Simferopol

Scopus Author ID 7007129056


Competing Interests:

None



I. A. Yatskov
Department of Internal Medicine № 2, Institute «S. I. Georgievsky Medical Academy», V. I. Vernadsky Crimean Federal University
Russian Federation

Igor A. Yatskov.

Simferopol

Scopus Author ID 57218873902


Competing Interests:

None



References

1. Gomes AC, Bueno AA, de Souza RGM, Mota JF. Gut microbiota, probiotics and diabetes. Nutrition Journal. 2014;13(1). doi: https://doi.org/10.1186/1475-2891-13-60

2. Thursby E, Juge N. Introduction to the human gut microbiota. Biochemical Journal. 2017;474(11):1823-1836. doi: https://doi.org/10.1042/bcj20160510

3. Heintz-Buschart A, Wilmes P. Human Gut Microbiome: Function Matters. Trends in Microbiology. 2018;26(7):563-574. doi: https://doi.org/10.1016/j.tim.2017.11.002

4. Jandhyala SM. Role of the normal gut microbiota. World Journal of Gastroenterology. 2015;21(29):8787. doi: https://doi.org/10.3748/wjg.v21.i29.8787

5. R.K. Tlyustangelova1, S.V. Dolinnyy, N.Yu. Pshenichnaya. The role of short-chain fatty acids in the pathogenesis of acute intestinal infections and post-infectious syndromes // РМЖ. — 2019. — №10.— С. 31-35.

6. Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The Microbiota–Gut–Brain Axis in Psychiatric Disorders. International Journal of Molecular Sciences. 2022;23(19):11245. doi: https://doi.org/10.3390/ijms231911245

7. Sikalidis AK. Amino Acids and Immune Response: A Role for Cysteine, Glutamine, Phenylalanine, Tryptophan and Arginine in T-cell Function and Cancer? Pathology & Oncology Research. 2014;21(1):9-17. doi: https://doi.org/10.1007/s12253-014-9860-0

8. Wang G, Huang S, Wang Y, et al. Bridging intestinal immunity and gut microbiota by metabolites. Cellular and Molecular Life Sciences. 2019;76(20):3917-3937. doi: https://doi.org/10.1007/s00018-019-03190-6

9. Ibragimova LI, Kolpakova EA, Dzagakhova AV, et al. The role of the gut microbiota in the development of type 1 diabetes mellitus. Diabetes mellitus. 2021;24(1):62-69. (In Russ.). doi: https://doi.org/10.14341/DM10326-988551.

10. Vatanen T, Franzosa EA, Schwager R, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018; 562(7728):589-594. doi: https://doi.org/10.1038/s41586-018-0620-2

11. Dedrick S, Sundaresh B, Huang Q, et al. The Role of Gut Microbiota and Environmental Factors in Type 1 Diabetes Pathogenesis. Frontiers in Endocrinology. 2020;11. doi: https://doi.org/10.3389/fendo.2020.00078

12. Yang G, Wei J, Liu P, et al. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism. 2021;117:154712. doi: https://doi.org/10.1016/j.metabol.2021.154712

13. Demidova TY, Lobanova KG, Korotkova TN, Kharchilava LD. Abnormal gut microbiota and impaired incretin effect as a cause of type 2 diabetes mellitus. Medical Herald of the South of Russia. 2022;13(1):24-42. doi: https://doi.org/10.21886/2219-8075-2022-13-1-24-4214.

14. Allin KH, Tremaroli V, Caesar R, et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018;61(4):810-820. doi: https://doi.org/10.1007/s00125-018-4550-1

15. Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology. 2017;11(9):821-834. doi: https://doi.org/10.1080/17474124.2017.1343143

16. Yao Y, Kim G, Shafer S, et al. Mucus sialylation determines intestinal host-commensal homeostasis. Cell. 2022;185(7):1172-1188.e28. doi: https://doi.org/10.1016/j.cell.2022.02.013

17. Suriano F, Nyström EEL, Sergi D, Gustafsson JK. Diet, microbiota, and the mucus layer: The guardians of our health. Frontiers in Immunology. 2022;13. doi: https://doi.org/10.3389/fimmu.2022.953196

18. Cai R, Cheng C, Chen J, Xu X, Ding C, Gu B. Interactions of commensal and pathogenic microorganisms with the mucus layer in the colon. Gut Microbes. Published online March 29, 2020:1-11. doi: https://doi.org/10.1080/19490976.2020.1735606

19. Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020;69(12):2232-2243. doi: https://doi.org/10.1136/gutjnl-2020-322260

20. Simanenkov VI, Maev IV, Tkacheva ON, et al. Syndrome of increased epithelial permeability in clinical practice. Multidisciplinary national Consensus. Cardiovascular Therapy and Prevention. 2021;20(1):2758. doi: https://doi.org/10.15829/1728-8800-2021-2758

21. Rose EC, Odle J, Blikslager AT, Ziegler AL. Probiotics, Prebiotics and Epithelial Tight Junctions: A Promising Approach to Modulate Intestinal Barrier Function. International Journal of Molecular Sciences. 2021;22(13):6729. doi: https://doi.org/10.3390/ijms22136729

22. Camilleri M, Madsen K, Spiller R, Van Meerveld BG, Verne GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterology & Motility. 2012;24(6):503-512. doi: https://doi.org/10.1111/j.1365-2982.2012.01921.x

23. Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Animal Science Journal. 2020;91(1). doi: https://doi.org/10.1111/asj.13357

24. Rabot S, Membrez M, Blancher F, et al. High fat diet drives obesity regardless the composition of gut microbiota in mice. Scientific Reports. 2016;6(1):32484. doi: https://doi.org/10.1038/srep32484

25. Salazar J, Angarita L, Morillo V, et al. Microbiota and Diabetes Mellitus: Role of Lipid Mediators. Nutrients. 2020;12(10):3039. doi: https://doi.org/10.3390/nu1210303

26. Del Chierico F, Rapini N, Deodati A, Matteoli MC, Cianfarani S, Putignani L. Pathophysiology of Type 1 Diabetes and Gut Microbiota Role. International Journal of Molecular Sciences. 2022;23(23):14650. doi: https://doi.org/10.3390/ijms232314650

27. Calabrese CM, Valentini A, Calabrese G. Gut Microbiota and Type 1 Diabetes Mellitus: The Effect of Mediterranean Diet. Frontiers in Nutrition. 2021;7. doi: https://doi.org/10.3389/fnut.2020.612773

28. Gavin PG, Mullaney JA, Loo D, et al. Intestinal Metaproteomics Reveals Host-Microbiota Interactions in Subjects at Risk for Type 1 Diabetes. Diabetes Care. 2018;41(10):2178-2186. doi:https://doi.org/10.2337/dc18-0777

29. Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. Journal of Diabetes Investigation. 2017;9(1):5-12. doi: https://doi.org/10.1111/jdi.12673

30. Ahuja M, Schwartz DM, Tandon M, et al. Orai1-Mediated Antimicrobial Secretion from Pancreatic Acini Shapes the Gut Microbiome and Regulates Gut Innate Immunity. Cell Metabolism. 2017;25(3):635-646. doi: https://doi.org/10.1016/j.cmet.2017.02.007

31. Wang S, Kai L, Zhu L, et al. Cathelicidin-WA Protects Against LPS-Induced Gut Damage Through Enhancing Survival and Function of Intestinal Stem Cells. Front Cell Dev Biol. 2021;9. doi: https://doi.org/10.3389/fcell.2021.685363

32. Pound LD, Patrick C, Eberhard CE, et al. Cathelicidin Antimicrobial Peptide: A Novel Regulator of Islet Function, Islet Regeneration, and Selected Gut Bacteria. Diabetes. 2015;64(12):4135-4147. doi: https://doi.org/10.2337/db15-0788

33. Liang W, Enée E, Andre-Vallee C, Falcone M, Sun J, Diana J. Intestinal Cathelicidin Antimicrobial Peptide Shapes a Protective Neonatal Gut Microbiota Against Pancreatic Autoimmunity. Gastroenterology. 2022;162(4):1288-1302.e16. doi: https://doi.org/10.1053/j.gastro.2021.12.272

34. de Kort S, Keszthelyi D, Masclee AAM. Leaky gut and diabetes mellitus: what is the link? Obesity Reviews. 2011;12(6):449-458. doi: https://doi.org/10.1111/j.1467-789x.2010.00845.x

35. Sapone A, de Magistris L, Pietzak M, et al. Zonulin Upregulation Is Associated With Increased Gut Permeability in Subjects With Type 1 Diabetes and Their Relatives. Diabetes. 2006;55(5):1443-1449. doi: https://doi.org/10.2337/db05-1593

36. Wood Heickman LK, DeBoer MD, Fasano A. Zonulin as a potential putative biomarker of risk for shared type 1 diabetes and celiac disease autoimmunity. Diabetes/Metabolism Research and Reviews. 2020;36(5). doi: https://doi.org/10.1002/dmrr.3309

37. Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Research. 2020; 9:69. doi: https://doi.org/10.12688/f1000research.20510.1

38. Xu J, Liang R, Zhang W, et al. Faecalibacterium prausnitzii ‐derived microbial anti‐inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. Journal of Diabetes. 2019;12(3):224-236. doi: https://doi.org/10.1111/1753-0407.12986

39. Huang J, Guan B, Lin L, Wang Y. Improvement of intestinal barrier function, gut microbiota, and metabolic endotoxemia in type 2 diabetes rats by curcumin. Bioengineered. 2021;12(2):11947-11958. doi: https://doi.org/10.1080/21655979.2021.2009322

40. Chakaroun RM, Massier L, Kovacs P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients. 2020;12(4):1082. doi: https://doi.org/10.3390/nu12041082

41. Chelakkot C, Choi Y, Kim DK, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Experimental & Molecular Medicine. 2018;50(2): e450-e450. doi: https://doi.org/10.1038/emm.2017.282

42. Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine. 2016;23(1):107-113. doi: https://doi.org/10.1038/nm.4236

43. Thaiss CA, Levy M, Grosheva I, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359(6382):1376-1383. doi: https://doi.org/10.1126/science.aar3318

44. Xu J, Liang R, Zhang W, et al. Faecalibacterium prausnitzii ‐derived microbial anti‐inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. Journal of Diabetes. 2019;12(3):224-236. doi: https://doi.org/10.1111/1753-0407.12986

45. Fuke N, Nagata N, Suganuma H, Ota T. Regulation of Gut Microbiota and Metabolic Endotoxemia with Dietary Factors. Nutrients. 2019;11(10):2277. doi: https://doi.org/10.3390/nu11102277

46. Scheithauer TPM, Rampanelli E, Nieuwdorp M, et al. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Frontiers in Immunology. 2020;11. doi: https://doi.org/10.3389/fimmu.2020.571731

47. Winer Daniel A, Luck H, Tsai S, Winer S. The Intestinal Immune System in Obesity and Insulin Resistance. Cell Metabolism. 2016;23(3):413-426. doi: https://doi.org/10.1016/j.cmet.2016.01.003

48. Genser L, Aguanno D, Soula HA, et al. Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. The Journal of Pathology. 2018;246(2):217-230. doi: https://doi.org/10.1002/path.5134

49. Koutoukidis DA, Jebb SA, Zimmerman M, et al. The association of weight loss with changes in the gut microbiota diversity, composition, and intestinal permeability: a systematic review and meta-analysis. Gut Microbes. 2022;14(1). doi: https://doi.org/10.1080/19490976.2021.2020068

50. Brar PC, Kohn B. Use of the microbiome in the management of children with type 2 diabetes mellitus. Current Opinion in Pediatrics. 2019;31(4):524-530. doi: https://doi.org/10.1097/mop.0000000000000781

51. Eslamparast T, Poustchi H, Zamani F, Sharafkhah M, Malekzadeh R, Hekmatdoost A. Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. The American Journal of Clinical Nutrition. 2014;99(3):535-542. doi: https://doi.org/10.3945/ajcn.113.068890

52. Tao YW, Gu YL, Mao XQ, Zhang L, Pei YF. Effects of probiotics on type II diabetes mellitus: a meta-analysis. Journal of Translational Medicine. 2020;18(1). doi: https://doi.org/10.1186/s12967-020-02213-2

53. Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A. Effects of Probiotics and Synbiotics on Obesity, Insulin Resistance Syndrome, Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease: A Review of Human Clinical Trials. International Journal of Molecular Sciences. 2016;17(6). doi: https://doi.org/10.3390/ijms17060928

54. Zhang Y, Gu Y, Ren H, et al. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nature Communications. 2020;11(1). doi: https://doi.org/10.1038/s41467-020-18414-8

55. Wang CH, Yen HR, Lu WL, et al. Adjuvant Probiotics of Lactobacillus salivarius subsp. salicinius AP-32, L. johnsonii MH-68, and Bifidobacterium animalis subsp. lactis CP-9 Attenuate Glycemic Levels and Inflammatory Cytokines in Patients with Type 1 Diabetes Mellitus. Frontiers in Endocrinology.2022; 13:754401. doi: https://doi.org/10.3389/fendo.2022.754401

56. Amir Reza Moravejolahkami, Mehdi Shakibaei, McGrattan A, Sharma M. Probiotics, prebiotics, and synbiotics in type 1 diabetes mellitus: A systematic review and meta‐analysis of clinical trials. Published online May 14, 2023. doi: https://doi.org/10.1002/dmrr.3655

57. Savilahti E, Härkönen T, Savilahti EM, Kukkonen K, Kuitunen M, Knip M. Probiotic intervention in infancy is not associated with development of beta cell autoimmunity and type 1 diabetes. Diabetologia. 2018;61(12):2668-2670. doi: https://doi.org/10.1007/s00125-018-4738-4

58. Buyvalenko UV, Pokrovskaya EV. Interaction between the gut microbiota and oral antihyperglycemic drugs. Problems of Endocrinology. 2022; 68(2):66-71.

59. Wang Z, Saha S, Stephanie Van Horn, et al. Gut microbiome differences between metformin- and liraglutide-treated T2DM subjects. Endocrinol Diabetes Metab. 2018;1(1). doi: https://doi.org/10.1002/edm2.9

60. Mueller NT, Differding MK, Zhang M, et al. Metformin Affects Gut Microbiome Composition and Function and Circulating Short-Chain Fatty Acids: A Randomized Trial. Diabetes Care. 2021;44(7):1462-1471. doi: https://doi.org/10.2337/dc20-2257

61. Wang Z, Saha S, Stephanie Van Horn, et al. Gut microbiome differences between metformin- and liraglutide-treated T2DM subjects. Endocrinol Diabetes Metab. 2018;1(1):e00009-e00009. doi: https://doi.org/10.1002/edm2.9

62. Beam A, Clinger E, Hao L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients. 2021;13(8):2795. doi: https://doi.org/10.3390/nu13082795


Supplementary files

Review

For citations:


Dvoryanchikov Ya.V., Deunezheva S.M., Beloglazov V.A., Yatskov I.A. Syndrome of increased intestinal permeability in type 1 and type 2 diabetes mellitus. Obesity and metabolism. 2024;21(3):309-315. (In Russ.) https://doi.org/10.14341/omet13027

Views: 745


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)