Metabolic properties of irisin in health and in diabetes mellitus
https://doi.org/10.14341/omet12899
Abstract
Irisin is a polypeptide hormone of muscle tissue (myokine), the synthesis and secretion of which increase against the background of physical exertion, which plays a significant role in the metabolism of fat, muscle and bone tissues. It is known that irisin promotes the transformation of white adipose tissue into brown adipose tissue. It has also been experimentally proven that the introduction of irisin contributed to an increase in bone mass and the prevention of osteoporosis and muscular atrophy. There are works indicating a positive effect of irisin in the functioning of bone, fat and muscle tissues in humans. Diabetes mellitus (DM) is an independent risk factor for osteoporotic fractures and the development of specific diabetic myopathy, at the cellular level similar to the aging of muscle tissue, and type 2 diabetes is also associated with the presence of obesity. Thus, it is of particular interest to study the effect of irisin on the state of bone, muscle and adipose tissues and glucose homeostasis in patients with diabetes. This literature review highlights the biological functions of irisin in healthy people and patients with DM.
About the Authors
F. M. RaduginRussian Federation
Fyodor M. Radugin, MD, postgraduate student
194021, Saint-Petersburg, 15 Parkhomenko Avenue
eLibrary SPIN: 7043-3620
N. V. Timkina
Russian Federation
Natalia V. Timkina, MD
Saint-Petersburg
eLibrary SPIN: 6259-7745
T. L. Karonova
Russian Federation
Tatiana L. Karonova, MD, PhD
Saint-Petersburg
eLibrary SPIN: 3337-4071
References
1. dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463-468. doi: https://doi.org/10.1038/nature10777
2. Maak S, Norheim F, Drevon CA, Erickson HP. Progress and Challenges in the Biology of FNDC5 and Irisin. Endocr Rev. 2021;42(4):436-456. doi: https://doi.org/10.1210/endrev/bnab003
3. Roca-Rivada A, Castelao C, Senin LL, et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One. 2013;8(4):e60563. doi: https://doi.org/10.1371/journal.pone.0060563
4. Tsuchiya Y, Ando D, Takamatsu K, Goto K. Resistance exercise induces a greater irisin response than endurance exercise. Metabolism. 2015;64(9):1042-1050. doi: https://doi.org/10.1016/j.metabol.2015.05.010
5. Abdullahi A, Jeschke MG. White Adipose Tissue Browning: A Doubleedged Sword. Trends Endocrinol Metab. 2016;27(8):542-552. doi: https://doi.org/10.1016/j.tem.2016.06.006
6. Li H, Wang F, Yang M, et al. The Effect of Irisin as a Metabolic Regulator and Its Therapeutic Potential for Obesity. Int J Endocrinol. 2021;2021(1):1-12. doi: https://doi.org/10.1155/2021/6572342
7. Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes. 2014;63(2):514-525. doi: https://doi.org/10.2337/db13-1106
8. Elsen M, Raschke S, Eckel J. Browning of white fat: does irisin play a role in humans?. J Endocrinol. 2014;222(1):R25-R38. doi: https://doi.org/10.1530/JOE-14-0189
9. Huh JY, Dincer F, Mesfum E, Mantzoros CS. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int J Obes (Lond). 2014;38(12):1538-1544. doi: https://doi.org/10.1038/ijo.2014.42
10. Otero-Díaz B, Rodríguez-Flores M, Sánchez-Muñoz V, et al. Exercise Induces White Adipose Tissue Browning Across the Weight Spectrum in Humans. Front Physiol. 2018;9(1):1-12. doi: https://doi.org/10.3389/fphys.2018.01781
11. Bettini S, Favaretto F, Compagnin C, et al. Resting Energy Expenditure, Insulin Resistance and UCP1 Expression in Human Subcutaneous and Visceral Adipose Tissue of Patients With Obesity. Front Endocrinol (Lausanne). 2019;10(1):1-12. doi: https://doi.org/10.3389/fendo.2019.00548
12. Lim J, Park HS, Kim J, et al. Depot-specific UCP1 expression in human white adipose tissue and its association with obesity-related markers. Int J Obes (Lond). 2020;44(3):697-706. doi: https://doi.org/10.1038/s41366-020-0528-4
13. Zhang Y, Xie C, Wang H, et al. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiol Endocrinol Metab. 2016;311(2):E530-E541. doi: https://doi.org/10.1152/ajpendo.00094.2016
14. Norheim F, Langleite TM, Hjorth M, et al. The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J. 2014;281(3):739-749. doi: https://doi.org/10.1111/febs.12619
15. Tsiloulis T, Carey AL, Bayliss J, et al. No evidence of white adipocyte browning after endurance exercise training in obese men. Int J Obes (Lond). 2018;42(4):721-727. doi: https://doi.org/10.1038/ijo.2017.295
16. Colaianni G, Cuscito C, Mongelli T, et al. The myokine irisin increases cortical bone mass [published correction appears in Proc Natl Acad Sci U S A. 2015;112(42):E5763]. Proc Natl Acad Sci U S A. 2015;112(39):12157-12162. doi: https://doi.org/10.1073/pnas.1516622112
17. Vaughan RA, Gannon NP, Mermier CM, Conn CA. Irisin, a unique non-inflammatory myokine in stimulating skeletal muscle metabolism. J Physiol Biochem. 2015;71(4):679-689. doi: https://doi.org/10.1007/s13105-015-0433-9
18. MacKenzie MG, Hamilton DL, Pepin M, et al. Inhibition of myostatin signaling through Notch activation following acute resistance exercise. PLoS One. 2013;8(7):e68743. doi: https://doi.org/10.1371/journal.pone.0068743
19. Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact. 2010;10(1):56-63.
20. Wong TS, Booth FW. Skeletal muscle enlargement with weightlifting exercise by rats. J Appl Physiol. 1988;65(2):950-954. doi: https://doi.org/10.1152/jappl.1988.65.2.950
21. Colaianni G, Cinti S, Colucci S, Grano M. Irisin and musculoskeletal health. Ann N Y Acad Sci. 2017;1402(1):5-9. doi: https://doi.org/10.1111/nyas.13345
22. Belaya ZE, Belova KYu, Biryukova EV, et al. Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteoporosis and Bone Diseases. 2021;24(2):4-47. (In Russ.). doi: https://doi.org/10.14341/osteo12930
23. Storlino G, Colaianni G, Sanesi L, et al. Irisin Prevents DisuseInduced Osteocyte Apoptosis. J Bone Miner Res. 2020;35(4):766-775. doi: https://doi.org/10.1002/jbmr.3944
24. Kim J-H, Kim D-Y. Aquarobic exercises improve the serum blood irisin and brain-derived neurotrophic factor levels in elderly women. Exp Gerontol. 2018;104(2):60-65. doi: https://doi.org/10.1016/j.exger.2018.01.024
25. Tu X, Rhee Y, Condon KW, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012;50(1):209-217. doi: https://doi.org/10.1016/j.bone.2011.10.025
26. Ma EB, Sahar NE, Jeong M, Huh JY. Irisin Exerts Inhibitory Effect on Adipogenesis Through Regulation of Wnt Signaling. Front Physiol. 2019;10(2):60-65. doi: https://doi.org/10.3389/fphys.2019.01085
27. Zhang J, Valverde P, Zhu X, et al. Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism. Bone Res. 2017;5(1):16056. doi: https://doi.org/10.1038/boneres.2016.56
28. Qiao X, Nie Y, Ma Y, et al. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci Rep. 2016;6(1):18732. doi: https://doi.org/10.1038/srep18732
29. Ye W, Wang J, Lin D, Ding Z. The immunomodulatory role of irisin on osteogenesis via AMPK-mediated macrophage polarization. Int J Biol Macromol. 2020;146(1):25-35. doi: https://doi.org/10.1016/j.ijbiomac.2019.12.028
30. Zhang D, Bae C, Lee J, et al. The bone anabolic effects of irisin are through preferential stimulation of aerobic glycolysis. Bone. 2018;114(1):150-160. doi: https://doi.org/10.1016/j.bone.2018.05.013
31. Xu L, Shen L, Yu X, et al. Effects of irisin on osteoblast apoptosis and osteoporosis in postmenopausal osteoporosis rats through upregulating Nrf2 and inhibiting NLRP3 inflammasome. Exp Ther Med. 2020;19(2):1084-1090. doi: https://doi.org/10.3892/etm.2019.8313
32. Colaianni G, Errede M, Sanesi L, et al. Irisin Correlates Positively With BMD in a Cohort of Older Adult Patients and Downregulates the Senescent Marker p21 in Osteoblasts. J Bone Miner Res. 2021;36(2):305-314. doi: https://doi.org/10.1002/jbmr.4192
33. Kawao N, Moritake A, Tatsumi K, Kaji H. Roles of Irisin in the Linkage from Muscle to Bone During Mechanical Unloading in Mice. Calcif Tissue Int. 2018;103(1):24-34. doi: https://doi.org/10.1007/s00223-018-0387-3
34. Luo Y, Qiao X, Ma Y, et al. Disordered metabolism in mice lacking irisin. Sci Rep. 2020;10(1):17368. doi: https://doi.org/10.1038/s41598-020-74588-7
35. Estell EG, Le PT, Vegting Y, et al. Irisin directly stimulates osteoclastogenesis and bone resorption in vitro and in vivo. Elife. 2020;9(1):17368. doi: https://doi.org/10.7554/eLife.58172
36. Klangjareonchai T, Nimitphong H, Saetung S, et al. Circulating Sclerostin and Irisin Are Related and Interact with Gender to Influence Adiposity in Adults with Prediabetes. Int J Endocrinol. 2014;2014(1):1-6. doi: https://doi.org/10.1155/2014/261545
37. Palermo A, Strollo R, Maddaloni E, et al. Irisin is associated with osteoporotic fractures independently of bone mineral density, body composition or daily physical activity. Clin Endocrinol (Oxf ). 2015;82(4):615-619. doi: https://doi.org/10.1111/cen.12672
38. Anastasilakis AD, Polyzos SA, Makras P, et al. Circulating irisin is associated with osteoporotic fractures in postmenopausal women with low bone mass but is not affected by either teriparatide or denosumab treatment for 3 months. Osteoporos Int. 2014;25(5):1633-1642. doi: https://doi.org/10.1007/s00198-014-2673-x
39. Singhal V, Lawson EA, Ackerman KE, et al. Irisin levels are lower in young amenorrheic athletes compared with eumenorrheic athletes and non-athletes and are associated with bone density and strength estimates. PLoS One. 2014;9(6):e100218. doi: https://doi.org/10.1371/journal.pone.0100218
40. Colaianni G, Notarnicola A, Sanesi L, et al. Irisin levels correlate with bone mineral density in soccer players. J Biol Regul Homeost Agents. 2017;31(4):21-28.
41. Colaianni G, Faienza MF, Sanesi L, et al. Irisin serum levels are positively correlated with bone mineral status in a population of healthy children. Pediatr Res. 2019;85(4):484-488. doi: https://doi.org/10.1038/s41390-019-0278-y
42. Jiang N, Xia W. Assessment of bone quality in patients with diabetes mellitus. Osteoporos Int. 2018;29(8):1721-1736. doi: https://doi.org/10.1007/s00198-018-4532-7
43. Sundararaghavan V, Mazur MM, Evans B, et al. Diabetes and bone health: latest evidence and clinical implications. Ther Adv Musculoskelet Dis. 2017;9(3):67-74. doi: https://doi.org/10.1177/1759720X16687480
44. Monaco CMF, Gingrich MA, Hawke TJ. Considering Type 1 Diabetes as a Form of Accelerated Muscle Aging. Exerc Sport Sci Rev. 2019;47(2):98-107. doi: https://doi.org/10.1249/JES.0000000000000184
45. Maliszewska K, Adamska-Patruno E, Krętowski A. The interplay between muscle mass decline, obesity, and type 2 diabetes. Pol Arch Intern Med. 2019;129(11):809-816. doi: https://doi.org/10.20452/pamw.15025
46. Faienza MF, Brunetti G, Sanesi L, et al. High irisin levels are associated with better glycemic control and bone health in children with Type 1 diabetes. Diabetes Res Clin Pract. 2018;141:10-17. doi: https://doi.org/10.1016/j.diabres.2018.03.046
47. Perakakis N, Triantafyllou GA, Fernández-Real JM, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017;13(6):324-337. doi: https://doi.org/10.1038/nrendo.2016.221
48. Kurdiova T, Balaz M, Mayer A, et al. Exercise-mimicking treatment fails to increase Fndc5 mRNA & irisin secretion in primary human myotubes. Peptides. 2014;56:1-7. doi: https://doi.org/10.1016/j.peptides.2014.03.003
49. Espes D, Lau J, Carlsson PO. Increased levels of irisin in people with long-standing Type 1 diabetes. Diabet Med. 2015;32(9):1172-1176. doi: https://doi.org/10.1111/dme.12731
50. Ates I, Arikan MF, Erdogan K, et al. Factors associated with increased irisin levels in the type 1 diabetes mellitus. Endocr Regul. 2017;51(1):1-7. doi: https://doi.org/10.1515/enr-2017-0001
51. Du XL, Jiang WX, Lv ZT. Lower Circulating Irisin Level in Patients with Diabetes Mellitus: A Systematic Review and Meta-Analysis. Horm Metab Res. 2016;48(10):644-652. doi: https://doi.org/10.1055/s-0042-108730
52. Zhang C, Ding Z, Lv G, et al. Lower irisin level in patients with type 2 diabetes mellitus: A case-control study and meta-analysis. J Diabetes. 2016;8(1):56-62. doi: https://doi.org/10.1111/1753-0407.12256
53. Cui L, Qiao T, Xu F, et al. Circulating irisin levels of prenatal and postnatal patients with gestational diabetes mellitus: A systematic review and meta-analysis. Cytokine. 2020;126:154924. doi: https://doi.org/10.1016/j.cyto.2019.154924
54. Kurdiova T, Balaz M, Vician M, et al. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol. 2014;592(5):1091-1107. doi: https://doi.org/10.1113/jphysiol.2013.264655
55. Moreno-Navarrete JM, Ortega F, Serrano M, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab. 2013;98(4):E769-E778. doi: https://doi.org/10.1210/jc.2012-2749
56. Wang X, Hu T, Ruan Y, et al. The Association of Serum Irisin with Bone Mineral Density and Turnover Markers in New-Onset Type 2 Diabetic Patients. Merlotti D, ed. Int J Endocrinol. 2022;2022:1-7. doi: https://doi.org/10.1155/2022/7808393
57. Yang L, Zhi S, Yang G, et al. Molecular identification of FNDC5 and effect of irisin on the glucose metabolism in common carp (Cyprinus carpio L.). Merlotti D, ed. Gen Comp Endocrinol. 2021;301:113647. doi: https://doi.org/10.1016/j.ygcen.2020.113647
58. Amengual J, García-Carrizo FJ, Arreguín A, et al. Retinoic Acid Increases Fatty Acid Oxidation and Irisin Expression in Skeletal Muscle Cells and Impacts Irisin In Vivo. Cell Physiol Biochem. 2018;46(1):187-202. doi: https://doi.org/10.1159/000488422
59. le Maire A, Alvarez S, Shankaranarayanan P, et al. Retinoid receptors and therapeutic applications of RAR/RXR modulators. Curr Top Med Chem. 2012;12(6):505-527. doi: https://doi.org/10.2174/156802612799436687
60. Richard D, Carpentier AC, Doré G, et al. Determinants of brown adipocyte development and thermogenesis. Int J Obes (Lond). 2010;34(S2):S59-S66. doi: https://doi.org/10.1038/ijo.2010.241
61. Zhang X, Zhang QX, Wang X, et al. Dietary luteolin activates browning and thermogenesis in mice through an AMPK/ PGC1α pathway-mediated mechanism. Int J Obes (Lond). 2016;40(12):1841-1849. doi: https://doi.org/10.1038/ijo.2016.108
62. Joffin N, Jaubert AM, Bamba J, et al. Acute induction of uncoupling protein 1 by citrulline in cultured explants of white adipose tissue from lean and high-fat-diet-fed rats. Adipocyte. 2015;4(2):129-134. doi: https://doi.org/10.4161/21623945.2014.989748
63. Wang S, Liang X, Yang Q, et al. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. Int J Obes (Lond). 2015;39(6):967-976. doi: https://doi.org/10.1038/ijo.2015.23
64. Christakos S, Li S, De La Cruz J, Bikle DD. New developments in our understanding of vitamin D metabolism, action and treatment. Metabolism. 2019;98:112-120. doi: https://doi.org/10.1016/j.metabol.2019.06.010
65. Ferland G. The discovery of vitamin K and its clinical applications. Ann Nutr Metab. 2012;61(3):213-218. doi: https://doi.org/10.1159/000343108
66. Gromova OA, Torshin IYu, Garas’ko EV, et al. System analysis of the relationship between the metabolism of vitamins by micro-biota and the survival of the positive microflora of the digestive tract. Experimental and clinical gastroenterology. 2013;2:28-36 (In Russ.).
67. Pankratova YuВ, Pigarova EA, Dzeranova LK. Vitamin K-dependent proteins: osteocalcin, matrix Gla-protein and extra osseous effects. Obesity and metabolism. 2013;10(2):11-18. (In Russ.). doi: https://doi.org/10.14341/2071-8713-4818
68. Li J, Zhang H, Yang C, et al. An overview of osteocalcin progress. J Bone Miner Metab. 2016;34(4):367-379. doi: https://doi.org/10.1007/s00774-015-0734-7
69. Dawson-Hughes B. Vitamin D and muscle function. Merlotti D, ed. J Steroid Biochem Mol Biol. 2017;173:313-316. doi: https://doi.org/10.1016/j.jsbmb.2017.03.018
70. De Toni L, Di Nisio A, Rocca MS, et al. Osteocalcin, a bone-derived hormone with important andrological implications. Andrology. 2017;5(4):664-670. doi: https://doi.org/10.1111/andr.12359
71. Mizokami A, Kawakubo-Yasukochi T, Hirata M. Osteocalcin and its endocrine functions. Biochem Pharmacol. 2017;132:1-8. doi: https://doi.org/10.1016/j.bcp.2017.02.001
72. Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature. 2008;454(7203):463-469. doi: https://doi.org/10.1038/nature07206
Supplementary files
|
1. Figure 1. 3D model of the FNDC5 protein, which is a precursor of irisin (by Schumacher, M.A., Ohashi, T., Shah, R.S., Chinnam, N., Erickson, H., https://www.sinobiological.com/resource/irisin- fndc5/proteins). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(179KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Extraskeletal effects of irisin (adapted from Ma C, Ding H, Deng Y, Liu H, Xiong X, Yang Y. Irisin: A New Code Uncover the Relationship of Skeletal Muscle and Cardiovascular Health During Exercise. Front Physiol. 2021;12: 620608. Published 2021 Feb 1. doi:10.3389/fphys.2021.620608 with changes and additions). PGC1α is a co-activator of peroxisome proliferator-activated receptors-gamma 1-alpha, FNDC5 is fibronectin type III domain-containing protein. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(276KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Effect of irisin on bone tissue (adapted from Zerlotin R, Oranger A, Pignataro P, et al. Irisin and Secondary Osteoporosis in Humans. Int J Mol Sci. 2022;23(2):690. Published 2022 Jan 8. doi: 10.3390/ijms23020690 with changes and additions). RANKL is a nuclear factor kappa-bi activator receptor ligand. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(234KB)
|
Indexing metadata ▾ |
Review
For citations:
Radugin F.M., Timkina N.V., Karonova T.L. Metabolic properties of irisin in health and in diabetes mellitus. Obesity and metabolism. 2022;19(3):332-339. (In Russ.) https://doi.org/10.14341/omet12899

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).