Preview

Obesity and metabolism

Advanced search

Using amplitude-phase parameters of circadian rhythms as diagnostic markers of carbohydrate metabolism disorders

https://doi.org/10.14341/omet12781

Abstract

BACKGROUND: With the development of visceral obesity, against the background of insulin resistance (IR), lipo- and glucose toxicity in tissues progresses, which disrupts the metabolic balance of the body, and is the main factor in the development of type 2 diabetes mellitus (DM2). To date, a growing number of publications highlighting the role of circadian rhythms in the control of gluconeogenesis and lipogenesis. In the context of the development of DM2, the process of rhythm mismatch (desynchronosis) is increasingly mentioned, for the diagnosis of which the calculation of amplitude-phase parameters is used. Thus, the study of circadian rhythm disturbances using amplitude-phase parameters and factors influencing them is of particular interest in individuals with visceral obesity and prediabetes, since the data obtained can be used as markers for preclinical diagnosis of DM2.

AIM: To identify significant differences in the parameters (amplitude, acrophase) of circadian rhythms (fasting glycemia, basal body temperature, heart rate) as markers of desynchronosis in groups without carbohydrate metabolism disorders, but with the presence of visceral obesity, prediabetes (impaired fasting glycemia, impaired glucose tolerance test) and DM2 and obesity.

MATERIALS AND METHODS: The study was conducted in individuals with visceral obesity, as well as the presence of prediabetes or DM2, with a disease experience of not more than 5 years.In accordance with the study design, every 3 hours during the day, the participants made self-measurements of blood glucose at home (using individual glucometers), basal body temperature (BTT) in the armpit (using a mercury thermometer) and heart rate (HR) ( with the help of an electronic tonometer), with the fixation of the results in self-control diaries. To assess the reliability of the circadian rhythms of the studied indicators, the interpretation of chronobiological parameters (MESORa-Midline Estimating Statistic of Rhytm; amplitude; acrophase) was carried out using a single сosinor analysis.

RESULTS: Of the 120 study participants, 73% were women and 27% were men. Mean age of participants was 58.6[52.2;56.7] years, BMI 31.3[29.7;33.9] and presence of visceral obesity WC 100 [93.8;104.7]. When conducting cosinor analysis, the daily rhythms of physiological indicators of fasting glycemia, BTT and heart rate differ from normal already in the group with visceral obesity without carbohydrate metabolism disorders and prediabetes, in the form of a decrease in the amplitude of daily rhythms (p<0.001), with a shift in their acrophases (p <0.001), no dynamics of night BBT decrease (р<0.001).

CONCLUSION: Integral amplitude-phase parameters of circadian rhythms of physiological parameters (fasting glycemia, basal body temperature, heart rate), as markers of desynchronosis, can be used in the presence of visceral obesity for preclinical diagnosis of prediabetes and DM2, which will have a preventive focus. This method of chronodiagnostics can be useful in health and prevention centers for people at risk of developing DM2.

 

 

About the Authors

A. E. Yuzhakova
Multiprofile Consultative and Diagnostic Center
Russian Federation

Anna E. Yuzhakova, MD

Tyumen, 625000, Melnikaite street, 117



A. A. Nelaeva
Tyumen State Medical University

Alsu A. Nelaeva, MD, PhD, Professor

Tyumen

Scopus Author ID: 726697;

eLibrary SPIN-код: 3005-6200



Yu. V. Nelaeva
Tyumen State Medical University

Yulia V. Nelaeva, MD, PhD

Tyumen

Scopus Author ID: 660841;

eLibrary SPIN-код: 1243-2550

 



D. G. Gubin
Tyumen State Medical University

Denis G. Gubin, MD, PhD, Professor

Tyumen

Scopus Author ID: 6602281114;

Researcher ID: P-9425-2015;

eLibrary SPIN-код: 5613-6376



References

1. Dedov II, Shestakova MV, Melnichenko GA, et al. Interdisciplinary clinical practice guidelines “Management of obesity and its comorbidities”. Obesity and Metabolism. 2021;18(1):5-99. (In Russ.). doi: https://doi.org/10.14341/omet12714

2. Verbovoy AF, Verbovaya NI, Dolgikh YA. Obesity is the basis of metabolic syndrome. Obesity and metabolism. 2021;18(2):142-149. (In Russ.). doi: https://doi.org/10.14341/omet12707

3. Ametov AS, Kamynina LL, Litvinenko VM. Gipoadiponektinemiya — marker glyukozo i lipotoksichnosti u patsientov s sakharnym diabetom tipa 2 i vistseral’nym ozhireniem. Endokrinologiya: novosti, mneniya, obuchenie. 2018;7(2):35-45. (In Russ.). doi: https://doi.org/10.24411/2304-9529-2018-12003

4. Kongress, posvyashchennyi Vsemirnomu dnyu bor’by s ozhireniem 2022. (In Russ.).Av. at: https://therapy.school/events/01032022/

5. Tsvetkova ES, Romantsova TI, Runova GE, et al. The influence of shift work on metabolic health. Obesity and metabolism. 2019;16(3):11-19. (In Russ.). doi: https://doi.org/10.14341/omet10015

6. Knutson KL, Wu D, Patel SR, et al. Association Between Sleep Timing, Obesity, Diabetes: The Hispanic Community Health Study/ Study of Latinos (HCHS/SOL) Cohort Study. Sleep. 2017;40(4). doi: https://doi:10.1093/sleep/zsx014

7. McHill AW, Wright KP Jr. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease. Obes Rev. 2017;18(S1):15-24. doi: https://doi:10.1111/obr.12503

8. Stenvers DJ, Scheer FAJL, Schrauwen P, et al. Circadian clocks and insulin resistance. Nat Rev Endocrinol. 2019;15(2):75-89. doi: https://doi.org/10.1038/s41574-018-0122-1

9. Gubin DG. Chronodiagnostics and chronotherapy — frontiers for personalized clinical medicine. Tyumen Med J. 2019;21(1):20-40. (In Russ.). doi: https://doi.org/10.36361/2307-4698-2019-21-1-20-40

10. Xue L, Liang H, Jiang X. Circannual temperature-related variation in hemoglobin A1c is unlikely to affect its use as a diagnostic test for type 2 diabetes. Clin Lab. 2012;58(5-6):481-488.

11. Gikas A, Sotiropoulos A, Pastromas V, et al. Seasonal variation in fasting glucose and HbA1c in patients with type 2 diabetes. Prim Care Diabetes. 2009;3(2):111-114. doi: https://doi.org/10.1016/j.pcd.2009.05.004

12. Anichkov DA, Shostak NA, Kotlyarova LA, Ivanov DS. Autonomous dysfunction in patients with metabolic syndrome: heart rate variability study. Cardiovascular Therapy and Prevention. 2005;4(4):85-90. (In Russ.).

13. Gubin DG. Chronodiagnostics and chronotherapy — frontiers for personalized clinical medicine. Tyumen Med J. 2019;21(1):20-40. doi: https://doi.org/10.36361/2307-4698-2019-21-1-20-40

14. Pronina T.S. Tsirkadiannyi ritm temperatury tela kak kharakteristika «biologicheskogo statusa organizma». Novye issledovaniya. 2020;3(63):115-131. (In Russ.). doi: https://doi.org/10.46742/2072-8840-2020-63-3-115-131

15. Available at: https://studylib.ru/doc/4152763/test-horna-ostbergadlya-opredeleniya-zhavoronkov-i-sov

16. Cornelissen G. Cosinor-based rhythmometry. Theor Biol Med Model. 2014;11(1):16. doi: https://doi.org/10.1186/1742-4682-11-16.

17. Сепетлиев Д. Статистические методы в научных медицинских исследованиях. — М.: Изд-во Медицина; 1968. — 419 с. [Sepetliev D. Statisticheskie metody v nauchnykh meditsinskikh issledovaniyakh. Moscow: Meditsina; 1968. 419 p. (In Russ.).

18. Hutchison AT, Wittert GA, Heilbronn LK. Matching meals to body clocks-impact on weight and glucose metabolism. Nutrients. 2017;9:E222. doi: https://doi.org/10.3390/nu9030222

19. Zimmet P, Alberti KGMM, Stern N, et al. The Circadian Syndrome: is the Metabolic Syndrome and much more! J Intern Med. 2019;286(2):181-191. doi: https://doi.org/10.1111/joim.12924

20. Morris CJ, Yang JN, Garcia JI, et al. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc Natl Acad Sci. 2015;112(17):E2225-E2234. doi: https://doi.org/10.1073/pnas.1418955112

21. Bastardot F, Marques-Vidal P, Vollenweider P. Association of body temperature with obesity. The CoLaus study. Int J Obes (Lond). 2019;43(5):1026-1033. doi: https://doi.org/10.1038/s41366-018-0218-7

22. Harfmann BD, Schroder EA, England JH, et al. Temperature as a Circadian Marker in Older Human Subjects:Relationship to Metabolic Syndrome and Diabetes. J Endocr Soc. 2017;1(7):843-851. doi: https://doi.org/10.1210/js.2017-00086

23. Panda S. Circadian physiology of metabolism. Science. 2016;354(6315):1008-1015. doi: https://doi.org/10.1126/science.aah4967

24. Poggiogalle E, Jamshed H, Peterson CM. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism. 2018;84:11-27. doi: https://doi.org/10.1016/j.metabol.2017.11.017

25. Knutson KL, von Schantz M. Associations between chronotype, morbidity and mortality in the UK Biobank cohort. Chronobiol Int. 2018;35(8):1045-1053. doi: https://doi.org/10.1080/07420528.2018.1454458

26. Lane JM, Vlasac I, Anderson SG, et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat Commun. 2016;7(1):10889. doi: https://doi.org/10.1038/ncomms10889

27. Kalmbach DA, Schneider LD, Cheung J, et al. Genetic Basis of Chronotype in Humans: Insights From Three Landmark GWAS. Sleep. 2017;40(2). doi: https://doi.org/10.1093/sleep/zsw048

28. Levandovski R, Sasso E, Hidalgo MP. Chronotype: a review of the advances, limits and applicability of the main instruments used in the literature to assess human phenotype. Trends Psychiatry Psychother. 2013;35(1):3-11. doi: https://doi.org/10.1590/S2237-60892013000100002

29. Knutson KL, von Schantz M. Associations between chronotype, morbidity and mortality in the UK Biobank cohort. Chronobiol Int. 2018;35(8):1045-1053. doi: https://doi.org/10.1080/07420528.2018.1454458


Supplementary files

1. Figure 1. Values of the daily rhythm of glycemia in groups.
Subject
Type Исследовательские инструменты
View (247KB)    
Indexing metadata ▾
2. Figure 2. Values of the daily rhythm of basal temperature in groups.
Subject
Type Исследовательские инструменты
View (215KB)    
Indexing metadata ▾
3. Figure 3. Values of the daily rhythm of heart rate in groups.
Subject
Type Исследовательские инструменты
View (220KB)    
Indexing metadata ▾

Review

For citations:


Yuzhakova A.E., Nelaeva A.A., Nelaeva Yu.V., Gubin D.G. Using amplitude-phase parameters of circadian rhythms as diagnostic markers of carbohydrate metabolism disorders. Obesity and metabolism. 2022;19(1):83-91. (In Russ.) https://doi.org/10.14341/omet12781

Views: 847


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)