Preview

Obesity and metabolism

Advanced search

The role of the apelin/APJ system in water homeostasis regulation

https://doi.org/10.14341/omet12752

Abstract

Water balance in the body is achieved by balancing renal and non-renal water losses with corresponding water intake. It is under the control of both the central nervous system, which integrates many parameters of water and electrolyte balance in the body, including inducing important adaptive behavioral responses, and three hormonal systems: vasopressinergic, renin-angiotensin-aldosterone and apelinergic. A lot of research is devoted to the regulation of water-electrolyte metabolism. However, this process is still quite difficult to understand, especially since more and more of its regulators are being discovered over time. One of them is the hormone apelin, an endogenous ligand for the APJ receptor. As is known, the receptor is highly expressed in many organs, such as the brain, heart, liver and kidneys, lungs, and has multidirectional effects.

This literature review discusses the main characteristics and features of the regulation of these systems in relation to water-electrolyte metabolism, as well as issues of intersystem interaction and modulation of the effects of apelin.

About the Authors

Kh. R. Fargieva
Endocrinology Research Centre
Russian Federation

Khava R. Fargieva, MD, postgraduate student

Moscow

eLibrary SPIN: 3476-5134



R. M. Guseinova
Endocrinology Research Centre

Raisat M. Guseinova, MD

Moscow

eLibrary SPIN: 9719-3850



E. A. Pigarova
Endocrinology Research Centre

Ekaterina A. Pigarova, MD, PhD

Moscow

Scopus Author ID 55655098500;

Researcher ID: T-9424-2018;

eLibrary SPIN: 6912-6331



L. K. Dzeranova
Endocrinology Research Centre

Larisa K. Dzeranova, MD, PhD

Moscow

eLibrary SPIN: 2958-5555



References

1. Pigarova EA, Dzeranova LK. Diagnosis and treatment of central diabetes insipidus. Obesity and metabolism. 2014;11(4):48-55. (In Russ.). doi: https://doi.org/10.14341/omet2014448-55

2. Christ-Crain M, Bichet DG, Fenske WK, et al. Diabetes insipidus. Nat Rev Dis Prim. 2019;5(1):54. doi: https://doi.org/10.1038/s41572-019-0103-2

3. Wallis M. Molecular evolution of the neurohypophysial hormone precursors in mammals: Comparative genomics reveals novel mammalian oxytocin and vasopressin analogues. Gen Comp Endocrinol. 2012;179(2):313-318. doi: https://doi.org/10.1016/j.ygcen.2012.07.030

4. Sparapani S, Millet-Boureima C, Oliver J, et al. The biology of vasopressin. Biomedicines. 2021;9(1):89. doi: https://doi.org/10.3390/biomedicines9010089

5. Baskett TF. The development of oxytocic drugs in the management of postpartum haemorrhage. Ulster Med J. 2004;S(S):2-6.

6. Bankir L, Bichet DG, Morgenthaler NG. Vasopressin: physiology, assessment and osmosensation. J Intern Med. 2017;282(4):284-297. doi: https://doi.org/10.1111/joim.12645

7. Lozić M, Šarenac O, Murphy D, Japundžić-Žigon N. Vasopressin, Central Autonomic Control and Blood Pressure Regulation. Curr Hypertens Rep. 2018;20(2):11. doi: https://doi.org/10.1007/s11906-018-0811-0

8. Navar LG. Physiology: hemodynamics, endothelial function, renin-angiotensin-aldosterone system, sympathetic nervous system. J Am Soc Hypertens. 2014;8(7):519-524. doi: https://doi.org/10.1016/j.jash.2014.05.014

9. Persson PB. Renin: origin, secretion and synthesis. J Physiol. 2003;552(3):667-671. doi: https://doi.org/10.1113/jphysiol.2003.049890

10. Szczepanska-Sadowska E, Czarzasta K, CudnochJedrzejewska A. Dysregulation of the renin-angiotensin system and the vasopressinergic system interactions in cardiovascular disorders. Curr Hypertens Rep. 2018;20(3):19. doi: https://doi.org/10.1007/s11906-018-0823-9

11. Dinh DT, Frauman AG, Johnston CI, Fabiani ME. Angiotensin receptors: distribution, signalling and function. Clin Sci. 2001;100(5):481-492. doi: https://doi.org/10.1042/CS20000263

12. Santos RA, Ferreira AJ, Simões e Silva AC. Recent advances in the angiotensin-converting enzyme 2-angiotensin (1-7)-Mas axis. Exp Physiol. 2008;93(5):519-527. doi: https://doi.org/10.1113/expphysiol.2008.042002

13. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensinconverting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):E1-E9. doi: https://doi.org/10.1161/01.RES.87.5.e1

14. Yugandhar VG, Clark MA. Angiotensin III: A physiological relevant peptide of the renin angiotensin system. Peptides. 2013;46:26-32. doi: https://doi.org/10.1016/j.peptides.2013.04.014

15. Abrao Saad W, Antonio De Arruda Camargo L, et al. Influence of arginine vasopressin receptors and angiotensin receptor subtypes on the water intake and arterial blood pressure induced by vasopressin injected into the lateral septal area of the rat. Auton Neurosci. 2004;111(1):66-70. doi: https://doi.org/10.1016/j.autneu.2003.08.013

16. de Arruda Camargo LA, Saad WA, Cerri PS. Effects of V1 and angiotensin receptor subtypes of the paraventricular nucleus on the water intake induced by vasopressin injected into the lateral septal area. Brain Res Bull. 2003;61(5):481-487. doi: https://doi.org/10.1016/S0361-9230(03)00184-9

17. McKinley M, Cairns M, Denton D, et al. Physiological and pathophysiological influences on thirst. Physiol Behav. 2004;81(5):795-803. doi: https://doi.org/10.1016/j.physbeh.2004.04.055

18. Szczepanska-Sadowska E. Hormonal inputs to thirst. In: Ramsay DJ, Booth D, editors. Thirst: physiological and psychological aspects. London: Springer London; 1991. P. 110-130.

19. Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev. 1998;78(3):583-686. doi: https://doi.org/10.1152/physrev.1998.78.3.583

20. Wright JW, Sullivan MJ, Quirk WS, et al. Heightened blood pressure and drinking responsiveness to intracerebroventricularly applied angiotensins in the spontaneously hypertensive rat. Brain Res. 1987;420(2):289-294. doi: https://doi.org/10.1016/0006-8993(87)91249-2.

21. Timmermans PB, Wong PC, Chiu AT, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993;45(2):205-251.

22. Casare FAM, Thieme K, Costa-Pessoa JM, et al. Renovascular remodeling and renal injury after extended angiotensin II infusion. Am J Physiol Regul Integr Comp Physiol. 2016;310(11):F1295-F1307. doi: https://doi.org/10.1152/ajprenal.00471.2015

23. Kihara M, Umemura S, Sumida Y, et al. Genetic deficiency of angiotensinogen produces an impaired urine concentrating ability in mice. Kidney Int. 1998;53(3):548-555. doi: https://doi.org/10.1046/j.1523-1755.1998.00801.x

24. Li XC, Shao Y, Zhuo JL. AT1a receptor knockout in mice impairs urine concentration by reducing basal vasopressin levels and its receptor signaling proteins in the inner medulla. Kidney Int. 2009;76(2):169-177. doi: https://doi.org/10.1038/ki.2009.134

25. Navar LG, Kobori H, Prieto-Carrasquero M. Intrarenal angiotensin II and hypertension. Curr Hypertens Rep. 2003;5(2):135-143. doi: https://doi.org/10.1007/s11906-003-0070-5

26. Szczepanska-Sadowska E, Zera T, Sosnowski P, et al. Vasopressin and related peptides; potential value in diagnosis, prognosis and treatment of clinical disorders. Curr Drug Metab. 2017;18(4):306-345. doi: https://doi.org/10.2174/1389200218666170119145900

27. O’Dowd BF, Heiber M, Chan A, et al. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene. 1993;136(1-2):355-360. doi: https://doi.org/10.1016/0378-1119(93)90495-o

28. Liu W, Yan J, Pan W, Tang M. Apelin/Elabela-APJ: a novel therapeutic target in the cardiovascular system. Ann Transl Med. 2020;8(5):243. doi: https://doi.org/10.21037/atm.2020.02.07

29. Tatemoto K, Hosoya M, Habata Y, et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 1998;251(2):471-476. doi: https://doi.org/10.1006/bbrc.1998.9489

30. Lee DK, Cheng R, Nguyen T, et al. Characterization of apelin, the ligand for the APJ receptor. J Neurochem. 2001;74(1):34-41. doi: https://doi.org/10.1046/j.1471-4159.2000.0740034.x

31. Habata Y, Fujii R, Hosoya M, et al. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim Biophys Acta - Mol Cell Res. 1999;1452(1):25-35. doi: https://doi.org/10.1016/S0167-4889(99)00114-7

32. Maguire JJ, Kleinz MJ, Pitkin SL, Davenport AP. [Pyr 1] Apelin-13 identified as the predominant apelin isoform in the human heart. Hypertension. 2009;54(3):598-604. doi: https://doi.org/10.1161/HYPERTENSIONAHA.109.134619

33. Barnes G, Japp AG, Newby DE. Translational promise of the apelin-APJ system. Heart. 2010;96(13):1011-1016. doi: https://doi.org/10.1136/hrt.2009.191122

34. Hosoya M, Kawamata Y, Fukusumi S, et al. Molecular and functional characteristics of APJ. J Biol Chem. 2000;275(28):21061-21067. doi: https://doi.org/10.1074/jbc.M908417199

35. O’Carroll A-M, Lolait SJ, Harris LE, Pope GR. The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. J Endocrinol. 2013;219(1):R13-R35. doi: https://doi.org/10.1530/JOE-13-0227

36. De Mota N, Lenkei Z, Llorens-Cortès C. Cloning, Pharmacological Characterization and Brain Distribution of the Rat Apelin Receptor. Neuroendocrinology. 2000;72(6):400-407. doi: https://doi.org/10.1159/000054609

37. Reaux A, De Mota N, Skultetyova I, et al. Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem. 2001;77(4):1085-1096. doi: https://doi.org/10.1046/j.1471-4159.2001.00320.x

38. Brailoiu GC, Dun SL, Yang J, et al. Apelin-immunoreactivity in the rat hypothalamus and pituitary. Neurosci Lett. 2002;327(3):193-197. doi: https://doi.org/10.1016/S0304-3940(02)00411-1

39. Goazigo AR-L, Morinville A, Burlet A, et al. Dehydration-induced cross-regulation of apelin and vasopressin immunoreactivity levels in magnocellular hypothalamic neurons. Endocrinology. 2004;145(9):4392-4400. doi: https://doi.org/10.1210/en.2004-0384

40. Johnson AK, Cunningham JT, Thunhorst RL. Integrative role of the lamina terminalis in the regulation of cardiovascular and body fluid homeostasis. Clin Exp Pharmacol Physiol. 1996;23(2):183-191. doi: https://doi.org/10.1111/j.1440-1681.1996.tb02594.x

41. Hurbin A, Boissin-Agasse L, Orcel H, et al. The V1a and V1b, But Not V2, Vasopressin Receptor Genes Are Expressed in the Supraoptic Nucleus of the Rat Hypothalamus, and the Transcripts Are Essentially Colocalized in the Vasopressinergic Magnocellular Neurons. Endocrinology. 1998;139(11):4701-4707. doi: https://doi.org/10.1210/en.139.11.4701

42. De Mota N, Reaux-Le Goazigo A, El Messari S, et al. Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci. 2004;101(28):10464-10469. doi: https://doi.org/10.1073/pnas.0403518101

43. Taheri S, Murphy K, Cohen M, et al. The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem Biophys Res Commun. 2002;291(5):1208-1212. doi: https://doi.org/10.1006/bbrc.2002.6575

44. Clarke KJ, Whitaker KW, Reyes TM. Diminished metabolic responses to centrally-administered apelin-13 in diet-induced obese rats fed a high-fat diet. J Neuroendocrinol. 2009;21(2):83-89. doi: https://doi.org/10.1111/j.1365-2826.2008.01815.x

45. Flahault A, Couvineau P, Alvear-Perez R, et al. Role of the vasopressin/apelin balance and potential use of metabolically stable apelin analogs in water metabolism disorders. Front Endocrinol (Lausanne). 2017;(8):120. doi: https://doi.org/10.3389/fendo.2017.00120

46. Roberts EM, Newson MJ, Pope GR, et al. Abnormal fluid homeostasis in apelin receptor knockout mice. J Endocrinol. 2009;202(3):453-462. doi: https://doi.org/10.1677/JOE-09-0134

47. Hus-Citharel A, Bodineau L, Frugière A, et al. Apelin counteracts vasopressin-induced water reabsorption via cross talk between apelin and vasopressin receptor signaling pathways in the rat collecting duct. Endocrinology. 2014;155(11):4483-4493. doi: https://doi.org/10.1210/en.2014-1257

48. Tang C, Zelenak C, Völkl J, et al. Hydration-sensitive gene expression in brain. Cell Physiol Biochem. 2011;27(6):757-768. doi: https://doi.org/10.1159/000330084

49. Azizi M, Iturrioz X, Blanchard A, et al. Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. J Am Soc Nephrol. 2008;19(5):1015-1024. doi: https://doi.org/10.1681/ASN.2007070816

50. Sekerci R, Acar N, Tepekoy F, et al. Apelin/APJ expression in the heart and kidneys of hypertensive rats. Acta Histochem. 2018;120(3):196-204. doi: https://doi.org/10.1016/j.acthis.2018.01.007

51. O’Carroll A-M, Selby TL, Palkovits M, Lolait SJ. Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim Biophys Acta - Gene Struct Expr. 2000;1492(1):72-80. doi: https://doi.org/10.1016/S0167-4781(00)00072-5

52. Hus-Citharel A, Bouby N, Frugière A, et al. Effect of apelin on glomerular hemodynamic function in the rat kidney. Kidney Int. 2008;74(4):486-494. doi: https://doi.org/10.1038/ki.2008.199

53. Ostrowski NL, Lolait SJ, Bradley DJ, et al. Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology. 1992;131(1):533-535. doi: https://doi.org/10.1210/endo.131.1.1535312

54. Deng C, Chen H, Yang N, et al. Apela regulates fluid homeostasis by binding to the apj receptor to activate gi signaling. J Biol Chem. 2015;290(30):18261-18268. doi: https://doi.org/10.1074/jbc.M115.648238

55. Ashley E, Chun HJ, Quertermous T. Opposing cardiovascular roles for the angiotensin and apelin signaling pathways. J Mol Cell Cardiol. 2006;41(5):778-781. doi: https://doi.org/10.1016/j.yjmcc.2006.08.013

56. Siddiquee K, Hampton J, McAnally D, et al. The apelin receptor inhibits the angiotensin II type 1 receptor via allosteric trans-inhibition. Br J Pharmacol. 2013;168(5):1104-1117. doi: https://doi.org/10.1111/j.1476-5381.2012.02192.x

57. Burrell LM, Johnston CI, Tikellis C, Cooper ME. ACE2, a new regulator of the renin–angiotensin system. Trends Endocrinol Metab. 2004;15(4):166-169. doi: https://doi.org/10.1016/j.tem.2004.03.001

58. Gurzu B, Cristian Petrescu B, Costuleanu M, Petrescu G. Interactions between apelin and angiotensin II on rat portal vein. J Renin-Angiotensin-Aldosterone Syst. 2006;7(4):212-216. doi: https://doi.org/10.3317/jraas.2006.040

59. Ishida J, Hashimoto T, Hashimoto Y, et al. Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem. 2004;279(25):26274-26279. doi: https://doi.org/10.1074/jbc.M404149200

60. Pigarova EA. Tsentral’nyi nesakharnyi diabet: patogeneticheskie i prognosticheskie aspekty, differentsial’naia diagnostika. [dissertation] Moscow; 2009. 186 p. (In Russ.).


Supplementary files

1. Figure 1. (A) Structure of the precursor of apelin, 77-amino acid preproapelin. (B) Amino acid sequences of (a) apelin-36, (b) apelin-17, (c) apelin-13, and (d) [Pyr1]apelin-13. Angiotensin converting enzyme 2 (ACE 2) can hydrolyze apelin-13 and apelin-36, removing the C-terminal residue.
Subject
Type Исследовательские инструменты
View (166KB)    
Indexing metadata ▾
2. Figure 2. Anatomy of the hypothalamic-pituitary region.
Subject
Type Исследовательские инструменты
View (263KB)    
Indexing metadata ▾

Review

For citations:


Fargieva Kh.R., Guseinova R.M., Pigarova E.A., Dzeranova L.K. The role of the apelin/APJ system in water homeostasis regulation. Obesity and metabolism. 2022;19(3):340-347. (In Russ.) https://doi.org/10.14341/omet12752

Views: 1393


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)