Adipose tissue: colors, depots and functions
Abstract
Obesity is a chronic disease characterized by excessive accumulation of adipose tissue. The prevalence of obesity and associated diseases has prompted researchers to expand the study of the biology of adipose tissue. New technologies have significantly expanded the understanding of adipogenesis mechanisms, various aspects of lipid and glucose metabolism, as well as the paracrine and endocrine functions of adipose tissue. Adipose tissue is a complex, heterogeneous endocrine organ. The existence of several shades of adipocytes demonstrates their morphological and functional heterogeneity. The main function of white adipose tissue is to store energy. Brown and white adipocytes perform a predominantly thermogenic function. Bone marrow (yellow) adipose tissue regulates the processes of bone remodeling and hematopoiesis. Pink adipocytes are formed during pregnancy and satisfy the energy needs of the offspring. The study of the biology of adipose tissue is crucial to understanding the pathophysiology of obesity and determining its molecular relationships with type 2 diabetes as well as cardiovascular and oncological diseases. The review presents current literature data on the origin, adipogenesis, and functional properties of adipose tissue depending on its cellular composition and localization. It outlines the nature of changes in adipose tissue in obesity and the clinical significance and therapeutic potential of various adipose tissue depots.
About the Author
T. I. RomantsovaRussian Federation
Tatiana I. Romantsova, MD, PhD, professor
2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia
References
1. Dedov II, Shestakova MV, Melnichenko GA, et al. Interdisciplinary clinical practice guidelines “Management of obesity and its comorbidities”. Obesity and metabolism. 2021;18(1):5-99. (In Russ.). doi: https://doi.org/10.14341/omet12714
2. Berry DC, Stenesen D, Zeve D, Graff JM. The developmental origins of adipose tissue. Development. 2013;140(19):3939-3949. doi: https://doi.org/10.1242/dev.080549
3. Lenz M, Arts ICW, Peeters RLM, et al. Adipose tissue in health and disease through the lens of its building blocks. Sci Rep. 2020;10(1):10433. doi: https://doi.org/10.1038/s41598-020-67177-1
4. Schoettl T, Fischer IP, Ussar S. Heterogeneity of adipose tissue in development and metabolic function. J Exp Biol. 2018;221(S1). doi: https://doi.org/10.1242/jeb.162958
5. Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156(1-2):20-44. doi: https://doi.org/10.1016/j.cell.2013.12.012
6. Cinti S. Adipose Organ Development and Remodeling. Compr Physiol. 2018;8(4):1357-1431. doi: https://doi.org/10.1002/cphy.c170042
7. Zinngrebe J, Debatin KM, Fischer-Posovszky P. Adipocytes in hematopoiesis and acute leukemia: friends, enemies, or innocent bystanders? Leukemia. 2020;34(9):2305-2316. doi: https://doi.org/10.1038/s41375-020-0886-x
8. Chait A, Hartigh LJ. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med. 2020;7:22. doi: https://doi.org/10.3389/fcvm.2020.00022
9. Kahn CR, Wang G, Lee KV. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. 2019;129(10):3990-4000. doi: https://doi.org/10.1172/JCI129187
10. Sorkina EL. Sindromy partsial’nykh i total’nykh lipodistrofii. In: Bolezni zhirovoi tkani. Ed by Dedova II. Moscow: GEOTAR-Media; P. 191-210. (In Russ.).
11. Luong Q, Huang J, Lee KY. Deciphering White Adipose Tissue Heterogeneity. Biology (Basel). 2019;8(2):23. doi: https://doi.org/10.3390/biology8020023
12. Berry DC, Jiang Y, Graff JM. Emerging roles of adipose progenitor cells in tissue development, homeostasis, expansion and thermogenesis. Trends in Endocrinol Metab. 2016;27(8):574-585. doi: https://doi.org/10.1016/j.tem.2016.05.001
13. Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20(4):242-258. doi: https://doi.org/10.1038/s41580-018-0093-z
14. Ambele MA, Dhanraj P, Giles R, Pepper MS. Adipogenesis: A Complex Interplay of Multiple Molecular Determinants and Pathways. Int J Mol Sci. 2020;21(12):4283. doi: https://doi.org/10.3390/ijms21124283
15. Hepler C, Shan B, Zhang Q, et al. Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. Elife. 2018;7(13):4773. doi: https://doi.org/10.7554/eLife.39636
16. Deutsch A, Feng D, Pessin JE, Shinoda K. The Impact of Single-Cell Genomics on Adipose Tissue Research. Int J Mol Sci. 2020;21(13):4773. doi: https://doi.org/10.3390/ijms21134773
17. Egorov AD, Penkov DN, Tkachuk VA. Molecular and cellular mechanisms of adipogenesis. Diabetes mellitus. 2015;18(2):12-19. (In Russ.). doi: https://doi.org/10.14341/DM2015212-19
18. Bielczyk-Maczynska E. White Adipocyte Plasticity in Physiology and Disease. Cells. 2019;8(12):1507. doi: https://doi.org/10.3390/cells8121507
19. Walther TC, Farese RV Jr. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 2012;81:687-714. doi: https://doi.org/10.1146/annurev-biochem-061009-102430
20. Luo L, Liu M. Adipose tissue in control of metabolism. J Endocrinol. 2016;231(3):R77-R99. doi: https://doi.org/10.1530/JOE-16-0211
21. Eckel J. Adipose Tissue. In: The Cellular Secretome and Organ Crosstalk. Vol 18. Elsevier; 2018:9-63. doi: https://doi.org/10.1016/B978-0-12-809518-8.00002-7
22. Zhang Y, Yu M, Dong J, et al. Identification of Novel Adipokines through Proteomic Profiling of Small Extracellular Vesicles Derived from Adipose Tissue. J Proteome Res. 2020;19(8):3130-3142. doi: https://doi.org/10.1021/acs.jproteome.0c00131
23. Hammarstedt A, Gogg S, Hedjazifar S, et al. Impaired Adipogenesis and Dysfunctional Adipose Tissue in Human Hypertrophic Obesity Physiol Rev. 2018;98(4):1911-1941. doi: https://doi.org/10.1152/physrev.00034.2017
24. Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 2016;15(9):639-660. doi: https://doi.org/10.1038/nrd.2016.75
25. Tsilingiris D, Liatis S, Dalamaga M, Kokkinos A. The Fight Against Obesity Escalates: New Drugs on the Horizon and Metabolic Implications. Curr Obes Rep. 2020;9(2):136-149. doi: https://doi.org/10.1007/s13679-020-00378-x
26. Trayhurn P. Brown adipose tissue — a therapeutic target in obesity? Front Physiol. 2018;9:1672. doi: https://doi.org/10.3389/fphys.2018.01672
27. Titov VN, Saltykova MM. The structurally and functionally different pools of fat tissue: insulin-independent visceral cells, insulin-dependent subcutaneous adipocytes and brown cells of thermogenesis. Klinicheskaya laboratornaya diagnostika. 2017;62(3):132-139. (In Russ.). doi: https://doi.org/10.18821/0869-2084-2017-62-3-132-139
28. Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360;1509-1517. doi: https://doi.org/10.1056/NEJMoa0810780
29. Petrovic N, Walden TB, Shabalina IG, et al. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010;285;7153-7164. doi: https://doi.org/10.1074/jbc.M109.053942
30. Pfeifer A, Klingespor M, Herzig S. Brown adipose tissue. Handbook of Experimental Pharmacology, Vol. 251. Springer, Cham; 2019. 424 p. doi: https://doi.org/1007/978-3-030-10513-6
31. Scheele C, Wolfrum C. Brown adipose crosstalk in tissue plasticity and human metabolism. Endocr Rev. 2020;41:53-56. doi: https://doi.org/10.1210/endrev/bnz007
32. Oguri Y, Kajimura S. Cellular heterogeneity in brown adipose tissue. J Clin Invest. 2020;130(1):65-67. doi: https://doi.org/10.1172/JCI133786
33. Ong F, Ahmed B, Oreskovich SM et al. Recent advances in the detection of brown adipose tissue in adult humans: a review. Clin Sci. 2018;132:1039-1054. doi: https://doi.org/10.1042/cs20170276
34. Sacks H, Simonds ME. Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes. Diabetes. 2013;62(60):1783-1790. doi: https://doi.org/10.2337/db12-1430
35. Leihner BP, Huang S, Brychta RJ, et al. Mapping of human adipose tissue in lean and obese young men. PNAS. 2017;114(32):8649-8654. doi: https://doi.org/10.107/pnas.1705287114
36. Chondronikola M, Sidossis LS. The Physiological Significance of Brown Adipose Tissue and the Beiging of White Adipose Tissue in People. In: Adipose Tissue Biology. Vol 22. Cham: Springer International Publishing; 2017:201-227. doi: https://doi.org/10.1007/978-3-319-52031-5_6
37. Maliszewska K, Kretowski A. Brown Adipose Tissue and Its Role in Insulin and Glucose Homeostasis. Int J Mol Sci. 2021;22(4):1530. doi: https://doi.org/10.3390/ijms22041530
38. Ladoux A, Peraldi P, Chignon-Sicard B, Dani C. Distinct Shades of Adipocytes Control the Metabolic Roles of Adipose Tissues: From Their Origins to Their Relevance for Medical Applications. Biomedicines. 2021;9(1):40. doi: https://doi.org/10.3390/biomedicines9010040
39. Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol. 2021;22(6):393-409. doi: https://doi.org/10.1038/s41580-021-00350-0
40. Rabiee A. Beige Fat Maintenance; Toward a Sustained Metabolic Health. Front Endocrinol (Lausanne). 2020;11. doi: https://doi.org/10.3389/fendo.2020.00634
41. Ruan H-B. Developmental and functional heterogeneity of thermogenic adipose tissue. J Mol Cell Biol. 2021;12(10):775-784. doi: https://doi.org/10.1093/jmcb/mjaa029
42. Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites. 2020;10(11):471. doi: https://doi.org/10.3390/metabo10110471.
43. Ikeda K, Maretich P, Kajimura S. The common and distinct features of brown and beige adipocytes. Trends Endocrinol Metab. 2018;29(3);191-200. doi: https://doi.org/10.1016/j.tem.2018.01.001.
44. Pollard AE, Carling D. Thermogenic adipocytes: lineage, function and therapeutic potential. Biochem J. 2020;477(11):2071-2093. doi: https://doi.org/10.1042/BCJ20200298.
45. Chondronikola М. The role of brown adipose tissue and the thermogenic adipocytes in glucose metabolism: recent advances and open questions. Curr Opin Clin Nutr Metab Care. 2020;23(4):282-287. doi: https://doi.org/10.1097/MCO.0000000000000662
46. Koksharova EO, Mayorov AYu, Shestakova MV, Dedov II. Metabolic characteristics and therapeutic potential of brown and ?beige? adipose tissues. Diabetes mellitus. 2014;17(4):5-15. (In Russ.). doi: https://doi.org/10.14341/DM201445-15
47. Yu H, Dilbaz S, Coßmann J, et al. Breast milk alkylglycerols sustain beige adipocytes through adipose tissue macrophages. J Clin Invest. 2019;129(6):2485-2499. doi: https://doi.org/10.1172/JCI125646
48. Sidoss L, Kajimura S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest. 2015;125:478-486. doi: https://doi.org/10.1172/JCI178362
49. Cheng L, Wang J, Dai H, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adypocyte. 2021;10(1):48-65. doi: https://doi.org/10.1080/21623945.2020.1870060
50. Ouellet V, Labbe SM, Blondin DP, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122(2):545. doi: https://doi.org/52.10.1172/JCI60433
51. Porter C, Chondronikola M, Sidossis LS. The therapeutic potential of brown adipocytes in human. Front Endocrinol (Lausanne). 2015;6:156. doi: https://doi.org/10.3389/fendo.2015.00156.
52. Muzik O, Mangner TJ, Leonard WR, et al. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. J Nucl Med. 2013;54(4):523-531. doi: https://doi.org/10.2967/jnumed.112.111336
53. Chondronikola M, Volpi E, Børsheim E, et al. Brown adipose tissue improves whole body glucose homeostasis and insulin sensitivity in humans. Diabetes. 2014;63(12):4089-4099. doi: https://doi.org/10.2337/db14-0746
54. Gavaldà-Navarro A, Villarroya J, Cereijo R, et al. The endocrine role of brown adipose tissue: An update on actors and actions. Rev Endocr Metab Disord. March 2021. doi: https://doi.org/10.1007/s11154-021-09640-6
55. Deshmukh AS, Peijs L, Beaudry JL, et al. Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as novel batokine. Cell Metab. 2019;30:1-13. doi: https://doi.org/10.1016/j.cmet.2019.10.001
56. Becher T, Palanisamy S, Kramer DJ, et al. Brown adipose tissue is associated with cardiometabolic health. Nat Med. 2021;27:58-65. doi: https://doi.org/10.1038/s41591-020-1126-7
57. Larson CJ. Translation pharmacology and physiology of brown adipose tissue in human disease and treatment. Handb Exp Pharmacol. 2019;251:381-424. doi: https://doi.org/10.1007/164_2018_184
58. Srivastava S, Richard L. Veech RL. Brown and Brite: The Fat Soldiers in the Anti-obesity Fight. Front Physiol. 2019;10:38. doi: https://doi.org/10.3389/fphys.2019.00038
59. Boroumand P, Klip A. Bone marrow adipose cells – cellular interactions and changes with obesity. J Cell Sci. 2020;133(5). doi: https://doi.org/10.1242/jcs.238394
60. De Paula FGA, Rosen CJ. Marrow adipocytes: origin, structure, and function. Annu Rev Physiol. 2020;82:461-484. doi: https://doi.org/10.1146/annurev-physiol-021119-034513
61. Bravenboer N, Bredella MA, Chauveau C, et al. Standardised Nomenclature, Abbreviations, and Units for the Study of Bone Marrow Adiposity: Report of the Nomenclature Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne). 2020;10:923. doi: https://doi.org/10.3389/fendo.2019.00923
62. Tratwal J, Labella R, Bravenboer N, et al. Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne). 2020;11:65. doi: https://doi.org/10.3389/fendo.2020.00065
63. Scheller EL, Cawton WP, Burr AA, et al. Marrow adipose tissue: Trimming the fat. Trends Endocrinol Metab. 2016;27(6):392-403. doi: https://doi.org/10.1016/j.tem.2016.03.016
64. Scheller EL, Khandaker S, Learman BS, et al. Bone marrow adipocytes resist lipolysis and remodeling in response to beta-adrenergic stimulation. Bone. 2019;118:32-41. doi: https://doi.org/10.1016/j.bone.2018.01.016
65. Veldhuis-Vlug AG, Rosen CJ. Mechanisms of marrow adiposity and its implications for skeletal health. Metabolism. 2017;67:106-114. doi: https://doi.org/10.1016/j.metabol.2016.11.013
66. Veldhuis-Vlug AG, Rosen CJ. Clinical implication of bone marrow adiposity. J Intern Med. 2018;283(2):121-139. doi: https://doi.org/10.1111/joim.12718
67. Li Z, Hardij J, Bagchi DP, et al. Development, regulation, metabolism and function of bone marrow adipose tissues. Bone. 2018;110:134-140. doi: https://doi.org/10.1016/j.bone.2018.01.008
68. Zhong L, Yao L, Tower RJ, et al. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. eLife. 2020;9:e54695. doi: https://doi.org/10.7554/eLife.54695
69. Bukowska J, Frazier T, Smith S, et al. Bone Marrow Adipocyte Developmental Origin and Biology. Curr Osteoporos Rep. 2018;16(3):312-319. doi: https://doi.org/10.1007/s11914-018-0442-z
70. Craft CS, Robles H, Lorenz ML, et al. Bone marrow adipose tissue does not express UCP1 during development or adrenergic-induced remodeling. Sci Rep. 2019;9(1):17427. doi: https://doi.org/10.1038/s41598-019-54036-x
71. Gόmez MPA, Benavent CA, Simoni P, et al. Fat and bone: The multiperspective analysis of a close relationship. Quant Imaging Med Surg. 2020;10:1614-1635. doi: https://doi.org/10.21037/qims.2020.01.11
72. Ambrosi TH, Scialdone A, Graja A, et al. Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration. Cell Stem Cell. 2017;20(6):771-784.e6. doi: https://doi.org/10.1016/j.stem.2017.02.009
73. Reagan MR, Fairfield H, Rosen CJ. Bone marrow adipocytes: A link between obesity and bone cancer. Cancers. 2021;13:364. doi: https://doi.org/10.3390/cancers13030364
74. Rendina-Ruedy E, Rosen CJ. Lipids in the bone marrow: An evolving perspective. Cell Metab. 2020;31(2):219-231. doi: https://doi.org/10.1016,/j.cmet.2019.09.015
75. Attane C, Esteve D, Chaoui K, et al. Human Bone Marrow Is Comprised of Adipocytes with Specific Lipid Metabolism. Cell Rep. 2020;30:949-958. doi: https://doi.org/10.1016/j.celrep.2019.12.089
76. Cawthorn WP, Scheller EL, Learman BS, et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 2014;20(2):368-375.doi: https://doi.org/10.1016/j.cmet.2014.06.003
77. Li Q, Wu Y, Kang N. Marrow Adipose Tissue: Its Origin, Function, and Regulation in Bone Remodeling and Regeneration. Stem Cells Int. 2018;2018:1-11. doi: https://doi.org/10.1155/2018/7098456
78. Cuminetti V, Arranz L. Bone Marrow Adipocytes: The Enigmatic Components of the Hematopoietic Stem Cell Niche. J Clin Med. 2019;8(5):707. doi: https://doi.org/10.3390/jcm8050707
79. Zou W, Rohatgi N, Brestoff JR, et al. Ablation of Fat Cells in Adult Mice Induces Massive Bone Gain. Cell Metab. 2020;32(5):801-813. doi: https://doi.org/10.1016/j.cmet.2020.09.011
80. Zhong L, Yao L, Seale P, Qin L. Marrow adipogenic lineage precursor: A new cellular component of marrow adipose tissue. Best Pract Res Clin Endocrinol Metab. 2021:101518. doi: https://doi.org/10.1016/j.beem.2021.101518
81. Tencerova M, Figeac F, Ditzel N, et al. High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice. J Bone Miner Res. 2018;33(6):1154-1165. doi: https://doi.org/10.1002/jbmr.3408
82. Bredella MA, Torriani M, Ghomi RH, et al. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring). 2011;19(1):49-53. doi: https://doi.org/10.1038/oby.2010.106
83. Santopaolo M, Gu Y, Spinetti G, Madeddu P. Bone marrow fat: friend or foe in people with diabetes mellitus? Clin Sci (Lond). 2020;134(8):1031-1048. doi: https://doi.org/10.1042/CS20200220
84. Fazeli PK, Klibanski A. The paradox of marrow adipose tissue in anorexia nervosa. Bone. 2019;118:47-52. doi: https://doi.org/10.1016/j.bone.2018.02.013
85. Li Y, Meng Y, Yu X. The Unique Metabolic Characteristics of Bone Marrow Adipose Tissue. Front Endocrinol (Lausanne). 2019;10:69. doi: https://doi.org/10.3389/fendo.2019.00069
86. Wang QA, Scherer PE. Remodeling of Murine Mammary Adipose Tissue during Pregnancy, Lactation, and Involution. J Mammary Gland Biol Neoplasia. 2019;24(3):207-212. doi: https://doi.org/10.1007/s10911-019-09434-2
87. Colleluori G, Perugini J, Barbatelli G, Cinti S. Mammary gland adipocytes in lactation cycle, obesity and breast cancer. Rev Endocr Metab Disord. 2021;22(2):241-255. doi: https://doi.org/10.1007/s11154-021-09633-5
88. Morroni M, Giordano A, Zingaretti MC, et al. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc Natl Acad Sci USA. 2004;101(48):16801–16806. doi: https://doi.org/10.1073/pnas.04076 47101
89. Dedov II, Mel’nichenko GA, Romantsova TI. Sindrom giperprolaktinemii. Moscow: Triada; 2004. 304 p. (In Russ.).
90. Song T, Kuang S. Adipocyte dedifferentiation in health and diseases. Clin Sci (Lond). 2019;133(20):2107-2119. doi: https://doi.org/10.1042/CS20190128
91. Cinti S. Pink Adipocytes. Trends Endocrinol Metab. 2018;29(9):651-666. doi: https://doi.org/10.1016/j.tem.2018.05.007
92. Prokesch A, Smorlesi A, Perugini J, et al. Molecular aspects of adipo-epithelial transdifferentiation in mouse mammary gland. Stem Cells. 2014;32(10):2756-2766. doi: https://doi.org/10.1002/stem.1756
93. Wang QA, Song A, Chen W, et al. Reversible De-differentiation of Mature White Adipocytes into Preadipocyte-like Precursors during Lactation. Cell Metab. 2018;28(2):282-288. doi: https://doi.org/10.1016/j.cmet.2018.05.022
94. Wang W, Ishibashi J, Trefely S, et al. A PRDM16-Driven Metabolic Signal from Adipocytes Regulates Precursor Cell Fate. Cell Metab. 2019;30(1):174-189. doi. https://doi.org/10.1016/j.cmet.2019.05.005
95. Giordano A, Perugini J, Kristensen DM, et al. Mammary alveolar epithelial cells convert to brown adipocytes in post-lactating mice. J Cell Physiol. 2017;232(11):2923-2928. doi. https://doi.org/10.1002/jcp.25858
96. Li L, Li B, Li M, et al. Brown adipocytes can display a mammary basal myoepithelial cell phenotype in vivo. Mol Metab. 2017;6(10):1198-1211. doi: https://doi.org/10.1016/j.molmet.2017.07.015
97. Kothari C, Diorio C, Durocher F. The Importance of Breast Adipose Tissue in Breast Cancer. Int J Mol Sci. 2020;21(16):5760. doi: https://doi.org/10.3390/ijms21165760
98. Colleluori G, Perugini J, Di Mercurio E, et al. Mammary gland adipo-epithelial remodelling during the lactation cycle. Obes Rev. 2020;21(S1):A201-202. doi: https://doi.org/10.1111/obr.13115
99. Zwick R, Guerrero-Juarez CF, Horsley V, Plikus MV. Anatomical, physiological and functional diversity of adipose tissue. Cell Metab. 2018;27(1):68-83. doi: https://doi.org/10.1016/j.cmet.2017.12.002
100. Ben-Jonathan N, Hugo E. Prolactin (PRL) in adipose tissue: regulation and functions. Adv Exp Med Biol. 2015;846:1-35. doi: https://doi.org/10.1007/978-3-319-12114-7_1
101. Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347-2355. doi. https://doi.org/10.1194/jlr.M5002 94-JLR200
102. Cinti S. White, brown, beige and pink: A rainbow in the adipose organ. Curr Opin Endocr Metab Res. 2019;4:29-36. doi: https://doi.org/10.1016/j.coemr.2018.07.003
Supplementary files
|
1. Figure 1. Phenotypic and functional properties of white, brown, beige, yellow, pink adipocytes (adapted from J. Zinngrebe et al., 2020) [7]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(503KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Alkylglycerols (ACG) breast milk lipids induce browning of white adipocytes in infants (adapted from H. Yo et al., 2019) [47]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(228KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Autocrine, paracrine and endocrine effects of batokins (adapted from C. Scheele et al., 2020) [31]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(397KB)
|
Indexing metadata ▾ |
|
4. Figure 4. Regulatory effect of marrow adipogenic lineage precursors (MALPs) (adapted from L. Chong et al., 2021) [80]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(383KB)
|
Indexing metadata ▾ |
|
5. Figure 5. Transdifferentiation of breast adipocytes in the lactation cycle (adapted from the work of C. Kothari et al., 2020) [97]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(342KB)
|
Indexing metadata ▾ |
Review
For citations:
Romantsova T.I. Adipose tissue: colors, depots and functions. Obesity and metabolism. 2021;18(3):282-301. (In Russ.)